=0)continue;target[key]=source[key];}return target;}import*as React from\"react\";function SvgPago(_ref,svgRef){var title=_ref.title,titleId=_ref.titleId,props=_objectWithoutProperties(_ref,_excluded);return/*#__PURE__*/React.createElement(\"svg\",_extends({xmlns:\"http://www.w3.org/2000/svg\",viewBox:\"0 0 874 800\",width:874,height:800,ref:svgRef,\"aria-labelledby\":titleId},props),title===undefined?/*#__PURE__*/React.createElement(\"title\",{id:titleId},\"Image 1\"):title?/*#__PURE__*/React.createElement(\"title\",{id:titleId},title):null,_defs||(_defs=/*#__PURE__*/React.createElement(\"defs\",null,/*#__PURE__*/React.createElement(\"image\",{width:641,height:734,id:\"img1\",href:\"\"}))),_style||(_style=/*#__PURE__*/React.createElement(\"style\",null)),_use||(_use=/*#__PURE__*/React.createElement(\"use\",{id:\"Background\",href:\"#img1\",x:95,y:66})));}var ForwardRef=/*#__PURE__*/React.forwardRef(SvgPago);export default __webpack_public_path__+\"static/media/pago.f2297feb4548c70cc46c64eb5a90d9d1.svg\";export{ForwardRef as ReactComponent};","import React from \"react\";\nimport { useRef, useState } from \"react\";\nimport Container from '@mui/material/Container';\nimport { useTheme } from '@mui/material/styles';\nimport Box from '@mui/material/Box';\nimport Stack from '@mui/material/Stack';\nimport Paper from '@mui/material/Paper';\nimport Typography from '@mui/material/Typography';\nimport MobileStepper from '@mui/material/MobileStepper';\nimport Button from '@mui/material/Button';\nimport KeyboardArrowLeft from '@mui/icons-material/KeyboardArrowLeft';\nimport KeyboardArrowRight from '@mui/icons-material/KeyboardArrowRight';\n\nimport anuncio from '../../assets/slideanuncios/anuncio.png';\nimport anuncio2 from '../../assets/slideanuncios/anuncio2.png';\nimport anuncio3 from '../../assets/slideanuncios/anuncio3.png';\nimport anuncioEstrenaton from '../../assets/slideanuncios/estrenaton2022.png';\nimport anuncioEstrenatonMovil from '../../assets/slideanuncios/estrenaton2022Movil.jpg';\n\nimport casaCompracasa from '../../assets/casa_compracasa.svg';\nimport ubicacionCompracasa from '../../assets/foto2.svg';\nimport ArrowForwardIcon from '@mui/icons-material/ArrowForward';\n\nimport { Grid } from \"@mui/material\";\nimport Carousel from \"react-material-ui-carousel\";\nimport { useNavigate } from \"react-router-dom\";\n\nconst SlideCompraEnUnSoloDiaItem = ({ datos }) => {\n let navigate = useNavigate();\n\n return (\n \n \n \n \n Compra una casa Pecsa en un solo día
\n \n \n \n \n { datos.textoMD }\n } sx={{ color:'#f5323f' }} onClick={()=>{ navigate('/tienda') }}>\n VER MÁS\n \n \n \n { datos.textoXS } \n \n \n \n \n \n \n \n );\n}\n\nexport { SlideCompraEnUnSoloDiaItem };","import React from \"react\";\nimport { useRef, useState } from \"react\";\nimport Container from '@mui/material/Container';\nimport { useTheme } from '@mui/material/styles';\nimport Box from '@mui/material/Box';\nimport Stack from '@mui/material/Stack';\nimport Paper from '@mui/material/Paper';\nimport Typography from '@mui/material/Typography';\nimport MobileStepper from '@mui/material/MobileStepper';\nimport Button from '@mui/material/Button';\nimport KeyboardArrowLeft from '@mui/icons-material/KeyboardArrowLeft';\nimport KeyboardArrowRight from '@mui/icons-material/KeyboardArrowRight';\n\nimport anuncio from '../../assets/slideanuncios/anuncio.png';\nimport anuncio2 from '../../assets/slideanuncios/anuncio2.png';\nimport anuncio3 from '../../assets/slideanuncios/anuncio3.png';\nimport anuncioEstrenaton from '../../assets/slideanuncios/estrenaton2022.png';\nimport anuncioEstrenatonMovil from '../../assets/slideanuncios/estrenaton2022Movil.jpg';\n\nimport casaCompracasa from '../../assets/casa_compracasa.svg';\nimport ubicacionCompracasa from '../../assets/foto2.svg';\nimport pagoCompracasa from '../../assets/pago.svg';\nimport ArrowForwardIcon from '@mui/icons-material/ArrowForward';\n\nimport { Grid } from \"@mui/material\";\nimport Carousel from \"react-material-ui-carousel\";\nimport { SlideCompraEnUnSoloDiaItem } from \"./SlideComprarEnUnSoloDiaItem\";\n\nconst items = [\n {\n textoMD: \n Elige el modelo que mas te guste\n ,\n textoXS: \n Elige el modelo que mas te guste\n ,\n imagen: casaCompracasa,\n },\n {\n textoMD: \n Escoge la mejor ubicacion para ti\n ,\n textoXS: \n Escoge la mejor ubicacion para ti\n ,\n imagen: ubicacionCompracasa,\n },\n {\n textoMD: \n Realiza tu pago y listo, habrás separado tu nueva casa.\n ,\n textoXS: \n Realiza tu pago y listo, habrás separado tu nueva casa.\n ,\n imagen: pagoCompracasa,\n },\n];\n\nconst SlideCompraEnUnSoloDia = () => {\n return (\n \n \n \n \n {\n items.map((item)=>(\n \n ))\n }\n \n \n \n\n );\n}\n\nexport { SlideCompraEnUnSoloDia };","import { Button, Grid, Typography } from \"@mui/material\";\nimport { Box, Container } from \"@mui/system\";\nimport { useNavigate } from \"react-router-dom\";\n\nconst BannerOpciones = () => {\n let navigate = useNavigate();\n const reedirigirCalendly = () =>{\n window.open('https://calendly.com/casas-pecsa')\n }\n const reedirigirCompracasa = () =>{\n navigate('/tienda');\n }\n return(\n \n \n \n \n \n \n Visita el Fraccionamiento\n \n \n \n Visita nuestros fraccionamientos y conoce de primera mano nuestros modelos o bien agenda una cita virtual con nuestros asesores y obten asesoria online.\n \n \n \n \n \n \n \n \n Amor a primera vista\n \n \n \n ¿Ya te enamoraste de nuestros modelos? ¡No esperes más! Separa tu casa en este instante completamente online. Rapido, comodo y seguro.\n \n \n \n \n \n \n \n \n );\n}\n\nexport { BannerOpciones }","import { Helmet } from \"react-helmet\";\n\nconst MetaPixel = () => {\n return(\n \n {/* */}\n \n \n {/* */}\n \n );\n}\n\nexport { MetaPixel }","import { Backdrop, Box, Button, CircularProgress, Link, TextField, Typography, styled } from \"@mui/material\";\nimport { useState } from \"react\";\nimport ClearRoundedIcon from '@mui/icons-material/ClearRounded';\nimport moment from \"moment/moment\";\nimport axios from \"axios\";\nimport useMediaQuery from '@mui/material/useMediaQuery';\nimport { useTheme } from '@mui/material/styles';\n\nconst regalos = [\n { id: 1, regalo: 'TV', video: 'https://storage.casaspecsa.com/Promociones/La+magia+de+comprar+tu+casa+Pecsa/premios/TV+C.mp4', videoMovil: 'https://storage.casaspecsa.com/Promociones/La+magia+de+comprar+tu+casa+Pecsa/premios/TV+C+(1).mp4'},\n { id: 2, regalo: 'Minisplit', video: 'https://storage.casaspecsa.com/Promociones/La+magia+de+comprar+tu+casa+Pecsa/premios/Mini+C.mp4', videoMovil: 'https://storage.casaspecsa.com/Promociones/La+magia+de+comprar+tu+casa+Pecsa/premios/Mini+C+(1).mp4'},\n { id: 3, regalo: 'Descuento', video: 'https://storage.casaspecsa.com/Promociones/La+magia+de+comprar+tu+casa+Pecsa/premios/Descuento+C.mp4', videoMovil: 'https://storage.casaspecsa.com/Promociones/La+magia+de+comprar+tu+casa+Pecsa/premios/Descuento+C+(1).mp4'}\n]\nconst BotonParaPromo = styled(Button)({\n backgroundColor:'#5adcc9',\n color:'#000',\n m:2,\n borderRadius:'12px',\n textTransform:'none',\n '&:hover':{\n backgroundColor:'#5adcc9',\n\n }\n});\nconst stylePecsaMoffin = {\n \"& label.Mui-focused\": {\n color: \"#5adcc9\",\n // backgroundColor:'rgba(5, 5, 5, 0.2)'\n },\n \"& .MuiInput-underline:after\": {\n borderBottomColor: \"#5adcc9\",\n \n },\n \"& .MuiOutlinedInput-root\": {\n // '& fieldset': {\n // borderColor: 'black',\n // },\n backgroundColor:'#fff',\n \"&:hover fieldset\": {\n borderColor: \"#5adcc9\"\n },\n \"&.Mui-focused fieldset\": {\n borderColor: \"#5adcc9\"\n }\n }\n}\n\nconst PopUpPromocion = () => {\n const [open, setOpen] = useState(true);\n const getOpen = () => {\n setOpen(!open);\n reestaurarValores();\n }\n const [jugar, setJugar] = useState(false);\n const [mostrarCanjear, setMostrarCanjear] = useState(false);\n const [gano, setGano] = useState(false);\n const [buttonGanoText, setButtonGanoText] = useState('Enviar');\n const [buttonGanoDisabled, setButtonGanoDisabled] = useState(false);\n\n const reestaurarValores = () => {\n setJugar(false);\n setMostrarCanjear(false);\n setGano(false);\n setButtonGanoText('Enviar');\n }\n\n const generarAleatorio = (inicio, fin) => {\n // Generar un número decimal aleatorio entre 0 y 1\n const numeroAleatorio = Math.random();\n\n // Escalar y desplazar el número para que esté dentro del rango\n const numeroEnRango = numeroAleatorio * (fin - inicio + 1) + inicio;\n\n // Redondear el número al entero más cercano (opcional)\n // Si no deseas redondear, simplemente devuelve `numeroEnRango`.\n return Math.floor(numeroEnRango);\n }\n const [numeroAleatorio, setNumeroAleatorio] = useState(generarAleatorio(0, 2));\n\n const [isLoading, setIsLoading] = useState(true);\n const handleVideoLoaded = () => {\n // console.log(isLoading);\n setIsLoading(false);\n // console.log(isLoading);\n };\n\n const theme = useTheme();\n const fullScreen = useMediaQuery(theme.breakpoints.down('md'));\n\n const sendEmail = (event) => {\n event.preventDefault();\n setButtonGanoText('Enviando...')\n setButtonGanoDisabled(true);\n const data = new FormData(event.currentTarget);\n\n axios.post(`${process.env.REACT_APP_API_URL}/api/email/sendPromo`, {\n nombre: data.get('nombre'),\n email: data.get('email'),\n fecha: moment().format('DD MMMM YYYY, h:mm:ss a'),\n regalo: numeroAleatorio,\n })\n .then((response) => {\n console.log(response.data)\n getOpen();\n reestaurarValores();\n setButtonGanoDisabled(false);\n })\n .catch((error) => {\n console.log(error)\n setButtonGanoText('Enviar');\n setButtonGanoDisabled(false);\n })\n }\n return(\n \n \n {\n jugar ? (\n gano ? (\n \n \n \n \n \n \n \n \n \n \n \n Escribe tu correo electronico para que recibas los pasos para reclamar tu premio.\n \n \n \n \n Al hacer click en el botón enviar aceptas {\n window.open('https://storage.casaspecsa.com/Promociones/La+magia+de+comprar+tu+casa+Pecsa/terminosYCondiciones/Terminos+y+condiciones+agosto-compressed_2.pdf','_blank');\n }}\n sx={{ color:'#5adcc9' }}\n >\n términos y condiciones de la promoción\n \n \n setOpen(!open)}\n type=\"submit\"\n disabled={buttonGanoDisabled}\n >\n { buttonGanoText }\n \n \n \n \n \n \n ) : (\n \n { \n isLoading && (\n \n \n \n )\n } \n setMostrarCanjear(true)}\n />\n {/* */}\n \n {\n mostrarCanjear && (\n setGano(true)}\n >\n Canjear\n \n )\n } \n \n \n )\n ) : (\n \n \n \n \n \n \n \n \n \n \n \n \n setJugar(true)}\n >\n Jugar\n \n \n \n \n )\n } \n \n \n \n );\n}\n\nexport { PopUpPromocion }","import defineProperty from \"./defineProperty.js\";\nfunction ownKeys(e, r) {\n var t = Object.keys(e);\n if (Object.getOwnPropertySymbols) {\n var o = Object.getOwnPropertySymbols(e);\n r && (o = o.filter(function (r) {\n return Object.getOwnPropertyDescriptor(e, r).enumerable;\n })), t.push.apply(t, o);\n }\n return t;\n}\nexport default function _objectSpread2(e) {\n for (var r = 1; r < arguments.length; r++) {\n var t = null != arguments[r] ? arguments[r] : {};\n r % 2 ? ownKeys(Object(t), !0).forEach(function (r) {\n defineProperty(e, r, t[r]);\n }) : Object.getOwnPropertyDescriptors ? Object.defineProperties(e, Object.getOwnPropertyDescriptors(t)) : ownKeys(Object(t)).forEach(function (r) {\n Object.defineProperty(e, r, Object.getOwnPropertyDescriptor(t, r));\n });\n }\n return e;\n}","import * as React from \"react\";\nconst WhitePecsaLogo = (props) => (\n \n);\nexport default WhitePecsaLogo;\n","import WhitePecsaLogo from \"../Icons/WhitePecsaLogo\";\nimport { Countdown } from \"../Countdown\";\n\nconst textItems = [\n \"Últimos días de precios 2024\",\n ,\n // ,\n].map((text, index) => ({\n id: index,\n text,\n}));\n\nexport const extendedTextItems = [\n ...textItems,\n ...textItems,\n ...textItems,\n ...textItems,\n ...textItems,\n ...textItems,\n ...textItems,\n ...textItems,\n ...textItems,\n];\n","import React from \"react\";\n\nimport { Helmet } from \"react-helmet\";\n\nimport { SlideAnuncios } from \"../../components/SlideAnuncios\";\nimport { ModelosCarrusel } from \"../../components/ModelosCarrusel\";\nimport { SolicitaCredito } from \"../../components/Banners/SolicitaCredito\";\nimport { FraccionamientosCarrusel } from \"../../components/FraccionamientosCarrusel\";\nimport { OchoRazones } from \"../../components/OchoRazones\";\n\nimport Box from \"@mui/material/Box\";\nimport { SlideCompraCasa } from \"../../components/SlideCompraCasa\";\nimport { OpinionesFamiliaPecsa } from \"../../components/OpinionesFamiliaPecsa\";\nimport { VideoBlogBanner } from \"../../components/VideoBlogBanner\";\nimport { SlideCompraEnUnSoloDia } from \"../../components/SlideCompraEnUnSoloDia\";\nimport { BannerOpciones } from \"../../components/BannerOpciones\";\nimport PortadaVideo from \"../../components/SlideAnuncios/PortadaVideo\";\nimport { VideoHome } from \"../../components/VideoHome\";\nimport { PopupYoutube } from \"../../components/Popups/PopupYoutube\";\nimport { PopupFoto } from \"../../components/Popups/PopupFoto\";\nimport { PopUpPromocion } from \"../../components/PopUpPromocion\";\nimport { MetaPixel } from \"../../components/MetaPixel\";\nimport { useNavigate } from \"react-router-dom\";\nimport { Typography } from \"@mui/material\";\nimport { InfiniteScrollHorizontal } from \"../../components/InfiniteHorizontalBanner\";\n\nconst Home = (props) => {\n let navigate = useNavigate();\n // console.log('estoy en Home', props);\n return (\n \n
\n Casas Pecsa | Home\n \n \n
\n\n {/* Contenedor de scroll infinito. Comentar/Descomentar todo el Box */}\n {/*
\n \n */}\n\n
\n \n \n {/*
\n \n */}\n
\n \n \n
\n \n \n
\n \n \n
\n \n \n {/*
\n \n */}\n
\n \n \n
\n \n \n
\n \n \n
\n \n \n {/*
*/}\n {/* navigate(\"/tienda/192T-102Bosques_De_Las_Lomas_Residencial\")} /> */}\n {/* */}\n \n );\n};\n\nexport { Home };\n","import * as React from 'react';\nimport { useEffect, useState } from \"react\";\nimport axios from 'axios';\nimport { useNavigate } from \"react-router-dom\";\nimport { Card, CardActionArea, CardContent, Grid, Typography } from \"@mui/material\";\nimport { Box, Container } from \"@mui/system\";\n\nimport HomeIcon from '@mui/icons-material/Home';\nimport CorporateFareIcon from '@mui/icons-material/CorporateFare';\nimport GroupIcon from '@mui/icons-material/Group';\nimport SellIcon from '@mui/icons-material/Sell';\n\nconst getPermisosDeAcceso = (perfil) => {\n const permisos = [\n { name: 'Administrador', accesos: [1,2,3,4,5,6,7] },\n { name: 'Asesor', accesos: [] },\n { name: 'Diseño', accesos: [] },\n { name: 'Tramitador', accesos: [3] },\n ]\n // console.log('llego');\n return permisos.find((element)=>element.name === perfil);\n}\n\nconst CargasMenu = () =>{\n let navigate = useNavigate();\n \n const [usuario, setUsuario] = useState(null);\n\n const [permisos, setPermisos] = useState(null);\n\n const getAcceso = (index) =>{\n if(permisos){\n return permisos.accesos.includes(index)\n }\n }\n\n useEffect(() => {\n const token = !localStorage.getItem('token') ? '': localStorage.getItem('token');\n \n axios.get(`${process.env.REACT_APP_API_URL}/api/usuarios/by-folio/${localStorage.getItem('id')}`, \n {\n headers: {\n Authorization: `Bearer ${token}`\n }\n })\n .then((response) => {\n // handle success\n console.log(response.data);\n setUsuario(response.data);\n // setPermisos(getPermisosDeAcceso(usuario.perfil.nombre))\n })\n .catch((error) => {\n // handle success\n console.log(error);\n navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n console.log('sae');\n });\n }, []);\n useEffect(() => {\n if(usuario){\n setPermisos(getPermisosDeAcceso(usuario.perfil.nombre))\n console.log('hey',usuario);\n }\n // console.log('hey',usuario);\n }, [usuario]);\n\n return(\n \n \n \n \n Carga de informacion
\n \n \n \n {\n getAcceso(1) && (\n \n \n { navigate('/cargas/inventario')}}>\n \n \n \n Inventario\n \n \n \n \n \n )\n }\n {\n getAcceso(2) && (\n \n \n { navigate('/cargas/modelos')}}>\n \n \n \n Modelos\n \n \n \n \n \n )\n }\n {\n getAcceso(3) && (\n \n \n { navigate('/cargas/clientes')}}>\n \n \n \n Clientes\n \n \n \n \n \n )\n }\n {\n getAcceso(4) && (\n \n \n { navigate('/cargas/promociones')}}>\n \n \n \n Promociones\n \n \n \n \n \n )\n }\n {\n getAcceso(5) && (\n \n \n { navigate('/cargas/empresas')}}>\n \n \n \n Empresas\n \n \n \n \n \n )\n }\n {\n getAcceso(6) && (\n \n \n { navigate('/cargas/usuarios')}}>\n \n \n \n Usuarios\n \n \n \n \n \n )\n }\n {\n getAcceso(7) && (\n \n \n { navigate('/cargas/asesores')}}>\n \n \n \n Asesores\n \n \n \n \n \n )\n }\n \n \n \n \n
\n );\n}\n\nexport { CargasMenu }","import { Outlet, useNavigate } from \"react-router-dom\";\n\nconst Cargas = (props) => {\n let navigate = useNavigate();\n //const [personajes, setPersonajes] = useState(props.datos.personajes || []);\n\n return(\n \n \n
\n );\n}\n\nexport { Cargas }","import { Route, Routes, useNavigate } from \"react-router-dom\";\nimport { Button, Card, CardActionArea, CardContent, CardMedia, Container, Grid, Typography } from \"@mui/material\";\nimport { Box } from \"@mui/system\";\nimport AddIcon from '@mui/icons-material/Add';\nimport AddCircleOutlineIcon from '@mui/icons-material/AddCircleOutline';\n\n\n\n\nconst MenuFraccionamientos = (props) => {\n let navigate = useNavigate();\n //console.log('menu', props);\n\n \n return(\n \n \n \n Fraccionamientos
\n \n \n \n \n \n { navigate('add')}}\n sx={{\n height:250\n }}\n >\n \n \n \n Agregar Fraccionamiento\n \n \n \n \n \n {\n props.inventario.map((producto) => ( \n \n \n {/* { navigate(`${producto.folio}`, {state:{fraccionamiento:producto}}) }}> */}\n { navigate(`${producto.folio}`) }}\n sx={{\n height:250\n }}\n >\n \n \n \n { producto.nombre}\n \n \n \n \n \n ))\n }\n \n \n \n {/* {\n props.productos.length < 1 ? nada
:\n props.productos.map((producto) => ( \n {producto.name}
\n ))\n } */}\n \n );\n}\nexport { MenuFraccionamientos }","import React, {useState,useEffect} from 'react';\nimport axios from 'axios';\nimport { BrowserRouter as Router, Routes, Route, useNavigate, useLocation, useSearchParams, Link, NavLink, Navigate } from \"react-router-dom\";\nimport { Container } from \"@mui/system\";\nimport { MenuFraccionamientos } from \"../../components/MenuFraccionamientos\";\nimport { Skeleton } from '@mui/material';\n\nconst Inventario = () => {\n let navigate = useNavigate();\n const location = useLocation();\n //console.log(location.state.inventario);\n\n //const [inventario, setInventario] = useState(location.state.inventario);\n const [inventario, setInventario] = useState([]);\n\n useEffect(() => {\n const token = !localStorage.getItem('token') ? '': localStorage.getItem('token');\n \n axios.get(`${process.env.REACT_APP_API_URL}/api/producto/fraccionamientos`, {\n headers: {\n Authorization: `Bearer ${token}`\n }\n })\n .then((response) => {\n // handle success\n console.log(response);\n setInventario(response.data) \n console.log('se valido Inventario');\n })\n .catch((error) => {\n // handle success\n console.log(error);\n navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n console.log('sae');\n });\n }, [setInventario]);\n\n return(\n \n \n {\n !inventario ? \n () : \n ()\n } \n \n
\n );\n}\n\nexport { Inventario }","import Visibility from '@mui/icons-material/Visibility';\nimport VisibilityOff from '@mui/icons-material/VisibilityOff';\nimport { FormControl, IconButton, InputAdornment, InputLabel, OutlinedInput } from '@mui/material';\nimport { useState } from \"react\";\n\nconst stylePecsaInputs = {\n \"& label.Mui-focused\": {\n color: \"#f5323f\"\n },\n \"& .MuiInput-underline:after\": {\n borderBottomColor: \"#d9d9d9\"\n },\n \"& .MuiOutlinedInput-root\": {\n // '& fieldset': {\n // borderColor: 'black',\n // },\n \"&:hover fieldset\": {\n borderColor: \"#d9d9d9\"\n },\n \"&.Mui-focused fieldset\": {\n borderColor: \"#d9d9d9\"\n }\n }\n}\n\nconst CustomInputPassword = ({ id = \"outlined-adornment-password\", label = \"Contraseña\", name = \"password\", handleChange, required = false, endAdornment, autoFocus = false }) => {\n const [showPassword, setShowPassword] = useState(false);\n\n const handleClickShowPassword = () => setShowPassword((show) => !show);\n\n const handleMouseDownPassword = (event) => {\n event.preventDefault();\n };\n\n return(\n \n { label }\n \n { endAdornment }\n \n { showPassword ? : }\n \n \n }\n autoComplete=\"current-password\"\n label={label}\n onChange={(e)=>handleChange(e.target.value)}\n autoFocus={autoFocus}\n />\n \n );\n}\n\nexport { CustomInputPassword }","import axios from \"axios\";\nimport { BrowserRouter as Router, Routes, Route, useNavigate, useLocation, Navigate, Link } from \"react-router-dom\";\nimport { Alert, Avatar, Button, Checkbox, Container, Divider, FormControlLabel, Grid, Snackbar, TextField, Typography } from \"@mui/material\"\nimport { Box } from \"@mui/system\";\n\nimport LockOutlinedIcon from '@mui/icons-material/LockOutlined';\nimport { useState } from \"react\";\n\nimport logo from '../../assets/logo.svg'\nimport { CustomInputPassword } from \"../../components/CustomInputPassword\";\n\nconst LoginUsuarios = () => {\n let navigate = useNavigate();\n let location = useLocation();\n \n const [perfil, setPerfil] = useState(null);\n // console.log(location);\n const [open, setOpen] = useState(false);\n\n const MostarAlert = () => {\n setOpen(true);\n };\n \n const CerrarAlert = (event, reason) => {\n if (reason === 'clickaway') {\n return;\n }\n \n setOpen(false);\n };\n\n const login = (event) => {\n event.preventDefault();\n const data = new FormData(event.currentTarget);\n // console.log({\n // email: data.get('email'),\n // password: data.get('password'),\n // });\n axios.post(`${process.env.REACT_APP_API_URL}/api/usuarios/login`, {\n email: data.get('email'),\n password: data.get('password'),\n })\n .then((response) => {\n // handle success\n console.log('logiiiiiiinnnn',response);\n localStorage.setItem('token', response.data.token);\n localStorage.setItem('id', response.data.user.folio);\n localStorage.setItem('type', 'usuario');\n setPerfil(response.data.user.perfil.nombre);\n if(response.data.user.perfil.nombre === \"Administrador\"){\n navigate('/cargas');\n }\n if(response.data.user.perfil.nombre === \"Asesor\"){\n navigate(`/espacio-asesor/${response.data.user.folio}/perfil`);\n }\n // navigate('/usuarios');\n })\n .catch((error) => {\n // handle success\n console.log(error);\n navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n console.log('sabe'); \n });\n };\n return(\n \n \n \n \n \n {/* \n \n */}\n \n Iniciar Sesion Usuarios Pecsa\n \n \n \n {/* */}\n \n {/* }\n label=\"Remember me\"\n /> */}\n \n {/* \n \n \n {\"¿Olvido su contraseña? O ¿Separo su casa y no sabe cuál es su contraseña? Clic Aquí\"}\n \n \n \n ó */}\n \n {/* */}\n \n \n \n \n \n \n Usuario no encontrado\n \n \n \n );\n}\n\nexport { LoginUsuarios }","import { useState } from \"react\";\nimport { useNavigate, useLocation } from \"react-router-dom\";\nimport { Button, Card, CardActionArea, CardContent, CardMedia, Container, Grid, Typography } from \"@mui/material\";\nimport { Box } from \"@mui/system\";\nimport AddIcon from '@mui/icons-material/Add';\nimport AddCircleOutlineIcon from '@mui/icons-material/AddCircleOutline';\nimport ApartmentSharpIcon from '@mui/icons-material/ApartmentSharp';\n\n\nconst MenuAmenidades = ({ fraccionamiento }) => {\n let navigate = useNavigate();\n const location = useLocation();\n // console.log(props.modelo);\n\n // const [fachadas, setFachadas] = useState(props.modelo.fachadas);\n\n return(\n \n \n \n Amenidades
\n \n \n \n \n \n { navigate('addAmenidad', {state:{fraccionamiento:fraccionamiento}} )}}>\n \n \n \n Agregar Amenidad\n \n \n \n \n \n {\n fraccionamiento.amenidades.map((amenidad)=>(\n \n \n { }}>\n \n \n \n {amenidad.nombre}\n \n \n \n \n \n ))\n }\n {/* {\n fachadas.map((fachada) => ( \n \n \n {\n fachada.fotos.length > 0 ? (\n // {fachada.nombre + 'hey'}
\n \n ) : (\n // {fachada.fotos[0].url}
\n \n )\n }\n \n { navigate(`${fachada.id}`) }}>\n \n \n Fachada: { fachada.nombre}\n \n \n \n \n \n ))\n } */}\n \n \n \n \n );\n}\n\nexport { MenuAmenidades }","import React, {useState,useEffect} from 'react';\nimport axios from \"axios\";\nimport { BrowserRouter as Router, Routes, Route, useNavigate, useLocation, Link, NavLink, Navigate } from \"react-router-dom\";\nimport { Autocomplete, Button, ButtonBase, Checkbox, Container, Divider, FormControl, Grid, IconButton, InputLabel, MenuItem, Select, Stack, TextareaAutosize, TextField, Typography } from '@mui/material';\nimport { Box } from '@mui/system';\n\nimport AddAPhotoIcon from '@mui/icons-material/AddAPhoto';\nimport sinlogo from '../../assets/sinlogo.png';\n\nimport StarOutlineRoundedIcon from '@mui/icons-material/StarOutlineRounded';\nimport StarRoundedIcon from '@mui/icons-material/StarRounded';\nimport ClearIcon from '@mui/icons-material/Clear';\n\nimport AddIcon from '@mui/icons-material/Add';\n\nimport { MenuAmenidades } from '../../components/MenuAmenidades';\n\nconst label = { inputProps: { 'aria-label': 'Checkbox demo' } };\n\nconst descripciones = [\n {title: 'Norte', desc: 'Al norte de la ciudad'},\n {title: 'Sur', desc: 'Al sur de la ciudad'},\n {title: 'Oriente', desc: 'Al oriente de la ciudad'},\n {title: 'Poniente', desc: 'Al poniente de la ciudad'},\n];\n\nconst AddFraccionamiento = () => {\n let navigate = useNavigate();\n const location = useLocation();\n //const [personaje, setPersonaje] = useState(location.state.personaje);\n\n const [ciudades, setCiudades] = useState([]);\n const [selectedCiudad, setSelectedCiudad] = useState(null);\n\n const [promociones, setPromociones] = useState([]);\n const [selectedPromocion, setSelectedPromocion] = useState(null);\n\n const [selectedDescripcion, setSelectedDescripcion] = useState(null);\n\n const [linkUbicacion, setLinkUbicacion] = useState(null);\n\n // const [selectedImage, setSelectedImage] = useState(null);\n // const [imageUrl, setImageUrl] = useState(null);\n const [selectedImage, setSelectedImage] = useState([]);\n const [imageUrl, setImageUrl] = useState(null);\n\n const [storageImages, setStorageImages] = useState([]);\n const [selectedImages, setSelectedImages] = useState([]);\n const [imagesUrl, setImagesUrl] = useState([]);\n\n const [storageImagesAmenidades, setStorageImagesAmenidades] = useState([]);\n const [selectedImageAmenidades, setSelectedImageAmenidades] = useState([]);\n const [imagesAmenidadesUrl, setImagesAmenidadesUrl] = useState([]);\n\n const [selectedMapa, setSelectedMapa] = useState([]);\n const [mapaUrl, setMapaUrl] = useState(null);\n const [mapaUrlAWS, setMapaUrlAWS] = useState(null);\n\n const [principal, setPrincipal] = useState(0);\n\n const [amenidad, setAmenidad] = useState(null);\n const [amenidades, setAmenidades] = useState([]);\n\n const add = (event) => {\n event.preventDefault();\n const data = new FormData(event.currentTarget);\n // // // const data = new FormData(); \n const token = !localStorage.getItem('token') ? '': localStorage.getItem('token');\n const folio = !localStorage.getItem('id') ? '': localStorage.getItem('id');\n //var formData = new FormData();\n // // // data.append('idMpio', selectedCiudad.id);\n data.set('idMpio', selectedCiudad.id);\n data.set('principal', principal);\n // data.set('amenidades', JSON.stringify(amenidades));\n // amenidades.map((amenidadesIt) => {\n // data.append('amenidades', [JSON.stringify(amenidadesIt)]);\n // })\n // console.log(data.get('amenidades')); return;\n\n data.delete('prefotosImg');\n storageImages.map((foto) => {\n data.append('fotosImg', foto);\n })\n data.delete('preAmenidadImg');\n // storageImagesAmenidades.map((foto) => {\n // data.append('fotosAmenidadesImg', foto);\n // })\n data.set('LinkUbicacion', linkUbicacion);\n data.set('folioCreateBy', folio);\n // let reader = new FileReader();\n // reader.readAsDataURL(selectedImage);\n data.set('idPromocion', selectedPromocion);\n const prueba = {\n nombre: data.get('nombre'),\n idMpio: selectedCiudad.id,\n logoImg: selectedImage,\n fotosImg: storageImages,\n folioCreateBy: folio,\n }\n //console.log('prueba::::', prueba); return;\n // console.log('data::::', data.get('fotosImg')); return;\n\n // for(const pair of data.entries()) {\n // console.log(`${pair[0]}, ${pair[1]}`);\n // }\n // return;\n axios.post(`${process.env.REACT_APP_API_URL}/api/fraccionamiento/`, \n // // {\n // // nombre: data.get('nombre'),\n // // idMpio: selectedCiudad.id,\n // // logoImg: selectedImage,\n // // fotosImg: storageImages,\n // // folioCreateBy: folio,\n // // },\n data,\n {\n headers: { \n Authorization: `Bearer ${token}`, \n 'Content-Type': 'multipart/form-data', \n //ContentType: 'multipart/form-data'\n } \n })\n .then((response) => {\n // handle success \n console.log(response);\n console.log('success axio');\n // navigate(-1, { replace: true });\n })\n .catch((error) => {\n // handle success\n console.log(error);\n // navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n console.log('sabe');\n });\n }\n\n const getPromocion = (event) => {\n setSelectedPromocion(event.target.value);\n };\n const removeImagen = (index) => {\n storageImages.splice(index, 1);\n imagesUrl.splice(index, 1);\n setStorageImages(storageImages);\n setImagesUrl(imagesUrl);\n }\n const AddAmenidad = () => { \n console.log(amenidad);\n setAmenidades([...amenidades, amenidad]);\n for (let i = 0; i < selectedImageAmenidades.length; i++) {\n setStorageImagesAmenidades([...storageImagesAmenidades, selectedImageAmenidades[i]])\n }\n console.log(amenidades);\n console.log(storageImagesAmenidades);\n }\n useEffect(()=>{\n console.log('selectedImageAmenidades',selectedImageAmenidades);\n for (let i = 0; i < selectedImageAmenidades.length; i++) {\n setAmenidad({...amenidad, foto:selectedImageAmenidades[i]})\n \n }\n },[selectedImageAmenidades]);\n useEffect(() => {\n const token = !localStorage.getItem('token') ? '': localStorage.getItem('token');\n \n if (selectedImage.length > 0) {\n setImageUrl(URL.createObjectURL(selectedImage[0]));\n }\n if (selectedImages.length > 0) {\n // console.log('imagenes seleccionsadoas: ', selectedImages);\n for (let i = 0; i < selectedImages.length; i++) {\n if(!storageImages.find( element => element === selectedImages[i])){\n storageImages.push(selectedImages[i]);\n imagesUrl.push(URL.createObjectURL(selectedImages[i]))\n } \n }\n // console.log('imagenes en storage: ', storageImages);\n // console.log('imagenes seleccionadoas: ', imagesUrl);\n }\n\n axios.get(`${process.env.REACT_APP_API_URL}/api/producto/createview`, {\n headers: {\n Authorization: `Bearer ${token}`\n }\n })\n .then((response) => {\n // handle success\n console.log(response);\n setCiudades(response.data.ciudades);\n setPromociones(response.data.promociones);\n })\n .catch((error) => {\n // handle success\n console.log(error);\n // navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n });\n }, [setCiudades, selectedImage, selectedImages, imagesUrl]);\n return(\n \n \n Nuevo Fraccionamiento
\n \n \n \n \n ciudad.estado.nombre}\n getOptionLabel={(ciudad) => ciudad.nombre}\n value={selectedCiudad}\n onChange={(event, newCiudad)=>{setSelectedCiudad(newCiudad);}}\n sx={{ width: 400 }}\n renderInput={(params) => }\n />\n { setLinkUbicacion(e.target.value) }} name=\"linkUbicacion\" required/>\n \n Ubicacion dentro de la ciudad\n \n \n \n \n \n \n \n {\n imageUrl ? selectedImage ? (\n \n ) : (\n \n ) : (\n \n )\n }\n \n \n \n \n \n \n \n \n \n \n \n \n {\n imagesUrl && (\n imagesUrl.map((imagen, index) => (\n \n { setImageUrl(imagen) } }\n >\n {/*
*/}\n } \n checkedIcon={}\n sx={{\n position: 'absolute',\n bottom:0, \n left:0,\n }}\n checked={index === principal ? (true) : (false)} \n onChange={ () => { setPrincipal(index) } }\n />\n { removeImagen(index) } }\n >\n \n \n {/* { } }\n >\n \n */}\n \n \n ))\n )\n }\n\n \n \n \n \n\n \n \n \n \n \n \n { setAmenidad({...amenidad, nombre: e.target.value }) }} variant=\"outlined\" name=\"nombreAmenidad\"/>\n \n \n { setAmenidad({...amenidad, descripcion: e.target.value }) }}\n />\n \n \n \n \n \n } onClick={AddAmenidad}>\n Agregar\n \n \n {\n amenidades.length > 0 && (\n amenidades.map((amenidadItem) => (\n \n Nombre: {amenidadItem.nombre}\n Descripcion: {amenidadItem.descripcion}\n \n )) \n )\n }\n \n \n \n \n {\n mapaUrlAWS && !mapaUrl ? (\n \n ) :\n mapaUrl ? selectedImage ? (\n \n ) : (\n \n ) : (\n \n )\n }\n \n \n \n \n \n \n \n \n Promociones\n \n \n \n \n \n \n \n \n );\n}\n\nexport { AddFraccionamiento }","import { Outlet, useNavigate } from \"react-router-dom\";\n\nconst CargasFraccionamiento = (props) => {\n let navigate = useNavigate();\n //const [personajes, setPersonajes] = useState(props.datos.personajes || []);\n\n return(\n \n \n
\n );\n}\n\nexport { CargasFraccionamiento }","import * as React from 'react';\nimport { useEffect, useState } from \"react\";\nimport { Avatar, Button, Container, Divider, Grid, Stack } from \"@mui/material\";\nimport Box from '@mui/material/Box';\nimport Typography from '@mui/material/Typography';\nimport m146 from '../../assets/bosques_logo.png';\nimport DeleteIcon from '@mui/icons-material/Delete';\nimport EditIcon from '@mui/icons-material/Edit';\nimport LocationOnIcon from '@mui/icons-material/LocationOn';\nimport { useNavigate } from 'react-router-dom';\n\nconst DatosFraccionamiento = (props) => {\n let navigate = useNavigate();\n const[fraccionamiento, setFraccionamiento] = useState(props.datos);\n //const fraccionamiento = props.datos;\n //console.log(fraccionamiento);\n useEffect(() => {\n setFraccionamiento(props.datos);\n }, [setFraccionamiento]);\n return(\n \n \n \n }\n spacing={2}\n \n >\n \n \n \n {fraccionamiento.nombre}\n \n \n Folio: {fraccionamiento.folio}\n \n \n Saltillo, Coahuila\n \n \n }\n sx={{ \n width: '100%',\n marginTop: 2\n }}\n onClick={ () => { navigate('edit') } }\n >\n Editar\n \n }\n sx={{ \n width: '100%',\n marginTop: 1\n }}\n >\n Borrar\n \n \n \n \n \n \n \n );\n}\n\nexport { DatosFraccionamiento }","import { useNavigate, useLocation } from \"react-router-dom\";\nimport { Button, Card, CardActionArea, CardContent, CardMedia, Container, Grid, Typography } from \"@mui/material\";\nimport { Box } from \"@mui/system\";\nimport AddIcon from '@mui/icons-material/Add';\nimport AddCircleOutlineIcon from '@mui/icons-material/AddCircleOutline';\nimport ApartmentSharpIcon from '@mui/icons-material/ApartmentSharp';\n\nconst MenuEtapas = (props) => {\n let navigate = useNavigate();\n const location = useLocation();\n console.log(location.state || 'nada');\n\n return(\n \n \n \n Etapas
\n \n \n \n \n \n { navigate('add', {state:{fraccionamiento:props.fraccionamiento}})}}>\n \n \n \n Agregar Etapa\n \n \n \n \n \n {\n props.fraccionamiento.etapas.map((etapa) => ( \n \n \n { navigate(`${etapa.folio}`, {state:{etapa:etapa}}) }}>\n \n\n \n \n { etapa.nombre}\n \n \n \n \n \n ))\n }\n \n \n \n \n );\n}\n\nexport { MenuEtapas }","import { Box, Skeleton } from '@mui/material';\nimport React, {useState,useEffect} from 'react';\nimport axios from 'axios';\nimport { BrowserRouter as Router, Routes, Route, useNavigate, useLocation, useParams, Link, NavLink, Navigate } from \"react-router-dom\";\nimport { DatosFraccionamiento } from '../../components/DatosFraccionamiento';\nimport { MenuEtapas } from '../../components/MenuEtapas';\nimport { MenuAmenidades } from '../../components/MenuAmenidades';\n\nconst InventarioFraccionamiento = () => {\n let navigate = useNavigate();\n const location = useLocation();\n let parametros = useParams();\n //const [fraccionamiento, setFraccionamiento] = useState(location.state.fraccionamiento);\n const [fraccionamiento, setFraccionamiento] = useState(null);\n //console.log(location.state.fraccionamiento);\n //console.log(parametros);\n\n useEffect(() => {\n const token = !localStorage.getItem('token') ? '': localStorage.getItem('token');\n \n\n axios.get(`${process.env.REACT_APP_API_URL}/api/fraccionamiento/${parametros.fraccionamiento}`, {\n headers: {\n Authorization: `Bearer ${token}`\n }\n })\n .then((response) => {\n // handle success\n console.log(response);\n setFraccionamiento(response.data) \n })\n .catch((error) => {\n // handle success\n console.log(error);\n navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n console.log('sae');\n });\n }, [setFraccionamiento]);\n\n return(\n \n \n \n {\n !fraccionamiento ?\n :\n \n }\n \n \n {\n !fraccionamiento ?\n :\n \n } \n \n \n {\n !fraccionamiento ?\n :\n \n } \n \n \n
\n );\n}\n\nexport { InventarioFraccionamiento }","import { useEffect, useState } from \"react\";\nimport axios from \"axios\";\nimport { BrowserRouter as Router, Routes, Route, useNavigate, useLocation, Link, NavLink, Navigate } from \"react-router-dom\";\n\nimport { Autocomplete, Avatar, Button, Container, Divider, Grid, Input, Stack, TextField } from \"@mui/material\"\nimport { Box } from \"@mui/system\";\nimport UploadFileIcon from '@mui/icons-material/UploadFile';\n\nconst AddEtapa = () => {\n let navigate = useNavigate();\n const location = useLocation();\n const [fraccionamiento, setFraccionamiento] = useState(location.state.fraccionamiento);\n //console.log(location.state);\n\n const [ciudades, setCiudades] = useState([]);\n const [selectedCiudadNotaria, setSelectedCiudadNotaria] = useState(null);\n const [selectedCiudadRegistro, setSelectedCiudadRegistro] = useState(null);\n\n // const [fraccionamientos, setFraccionamientos] = useState([]);\n // const [selectedFraccionamiento, setSelectedFraccionamiento] = useState(null);\n\n const [empresas, setEmpresas] = useState([]);\n const [selectedEmpresa, setSelectedEmpresa] = useState(null);\n\n const add = (event) => {\n event.preventDefault();\n const data = new FormData(event.currentTarget);\n const token = !localStorage.getItem('token') ? '': localStorage.getItem('token');\n const folio = !localStorage.getItem('id') ? '': localStorage.getItem('id');\n // console.log('archivoLicenciaContruccion:::', data.get('archivoLicenciaContruccion'));\n // console.log('archivoFactibilidadAgua:::', data.get('archivoFactibilidadAgua'));\n // console.log('archivoFactibilidadLuz:::', data.get('archivoFactibilidadLuz'));\n // console.log('archivoEscrituras:::', data.get('archivoEscrituras'));\n // return;\n data.set('idFraccionamiento', fraccionamiento.id);\n data.set('idEmpresa', selectedEmpresa.id);\n data.set('ciudadNotaria', selectedCiudadNotaria.id);\n data.set('ciudadRegistro', selectedCiudadRegistro.id);\n data.set('folioCreateBy', folio);\n\n axios.post(`${process.env.REACT_APP_API_URL}/api/etapa/`, \n // {\n // nombre: data.get('nombre'),\n // codigoPostal: data.get('codigoPostal'),\n // idFraccionamiento: fraccionamiento.id,\n // idEmpresa: selectedEmpresa.id,\n // numeroLicencia: data.get('numeroLicencia'),\n // licenciaOtorgadaPor: data.get('licenciaOtorgadaPor'),\n // fechaOtorgamientoLicencia: data.get('fechaOtorgamientoLicencia'),\n // // archivoLicenciaContruccion: \n // // archivoFactibilidadAgua: \n // // archivoFactibilidadLuz: \n // numeroEscritura: data.get('numeroEscritura'),\n // notaria: data.get('notaria'),\n // titularNotaria: data.get('titularNotaria'),\n // ciudadNotaria: selectedCiudadNotaria.id,\n // ciudadRegistro: selectedCiudadRegistro.id,\n // numeroPredio: data.get('numeroPredio'),\n // fechaEscrituracion: data.get('fechaEscrituracion'),\n // // archivoEscrituras: \n // folioCreateBy: folio,\n // },\n data,\n {\n headers: {\n Authorization: `Bearer ${token}`,\n 'Content-Type': 'multipart/form-data', \n } \n })\n .then((response) => {\n // handle success \n console.log(response);\n console.log('success axio'); \n fraccionamiento.etapas.push(response.data);\n //navigate(`/cargas/inventario/${fraccionamiento.folio.toString()}`, {state:{fraccionamiento:fraccionamiento}});\n //navigate(-1, { replace: true });\n })\n .catch((error) => {\n // handle success\n console.log(error);\n // navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n console.log('sabe');\n });\n }\n\n useEffect(() => {\n const token = !localStorage.getItem('token') ? '': localStorage.getItem('token');\n \n axios.get(`${process.env.REACT_APP_API_URL}/api/etapa/createview`, {\n headers: {\n Authorization: `Bearer ${token}`\n }\n })\n .then((response) => {\n // handle success\n console.log(response);\n setCiudades(response.data.ciudades);\n setEmpresas(response.data.empresas);\n })\n .catch((error) => {\n // handle success\n console.log(error);\n // navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n });\n }, [setCiudades]);\n\n return(\n \n \n Nueva Etapa
\n \n \n \n \n \n {/* fraccionamiento.nombre}\n value={selectedFraccionamiento}\n onChange={(event, newFraccionamiento)=>{setSelectedFraccionamiento(newFraccionamiento);}}\n sx={{ width: 300 }}\n renderInput={(params) => }\n /> */}\n empresa.nombre}\n value={selectedEmpresa}\n onChange={(event, newEmpresa)=>{setSelectedEmpresa(newEmpresa);}}\n sx={{ width: 300 }}\n renderInput={(params) => }\n />\n \n \n \n \n \n \n \n \n \n ciudad.estado.nombre}\n getOptionLabel={(ciudad) => ciudad.nombre}\n value={selectedCiudadNotaria}\n onChange={(event, newCiudad)=>{setSelectedCiudadNotaria(newCiudad);}}\n sx={{ width: 300 }}\n renderInput={(params) => }\n />\n ciudad.estado.nombre}\n getOptionLabel={(ciudad) => ciudad.nombre}\n value={selectedCiudadRegistro}\n onChange={(event, newCiudad)=>{setSelectedCiudadRegistro(newCiudad);}}\n sx={{ width: 300 }}\n renderInput={(params) => }\n />\n \n \n \n \n \n \n \n \n \n );\n}\n\nexport { AddEtapa }","import { Outlet, useNavigate } from \"react-router-dom\";\n\nconst CargasEtapa = (props) => {\n let navigate = useNavigate();\n //const [personajes, setPersonajes] = useState(props.datos.personajes || []);\n\n return(\n \n \n
\n );\n}\n\nexport { CargasEtapa }","import * as React from 'react';\nimport { useEffect, useState } from \"react\";\nimport { Button, Container, Divider, Grid, Stack } from \"@mui/material\";\nimport Box from '@mui/material/Box';\nimport Typography from '@mui/material/Typography';\nimport DeleteIcon from '@mui/icons-material/Delete';\nimport EditIcon from '@mui/icons-material/Edit';\nimport ApartmentSharpIcon from '@mui/icons-material/ApartmentSharp';\nimport MapsHomeWorkSharpIcon from '@mui/icons-material/MapsHomeWorkSharp';\nimport LocationOnIcon from '@mui/icons-material/LocationOn';\nimport { useNavigate } from 'react-router-dom';\n\nconst DatosEtapa = (props) => {\n let navigate = useNavigate();\n const[etapa, setEtapa] = useState(props.datos);\n return(\n \n \n \n }\n spacing={4}\n width='100%'\n >\n \n \n \n \n \n {etapa.nombre}\n \n \n Folio: {etapa.folio}\n \n \n Nombre Fraccionamiento\n \n \n Empresa\n \n \n Saltillo, Coahuila\n \n \n }\n sx={{ \n width: '100%',\n marginTop: 2\n }}\n onClick={()=>{navigate('edit')}}\n >\n Editar\n \n }\n sx={{ \n width: '100%',\n marginTop: 1\n }}\n >\n Borrar\n \n \n \n \n \n \n \n );\n}\n\nexport { DatosEtapa }","import { useNavigate, useLocation } from \"react-router-dom\";\nimport { Button, Card, CardActionArea, CardContent, CardMedia, Container, Grid, Typography } from \"@mui/material\";\nimport { Box } from \"@mui/system\";\nimport AddIcon from '@mui/icons-material/Add';\nimport AddCircleOutlineIcon from '@mui/icons-material/AddCircleOutline';\nimport SignpostSharpIcon from '@mui/icons-material/SignpostSharp';\n\nconst MenuManzanas = (props) => {\n let navigate = useNavigate();\n const location = useLocation();\n console.log(location.state || 'nada');\n\n return(\n \n \n \n Manzanas
\n \n \n \n \n \n { navigate('add', {state:{etapa:props.etapa}}) }}>\n \n \n \n Agregar Manzana\n \n \n \n \n \n {\n props.etapa.manzanas.map((manzana) => ( \n \n \n {/* { navigate(`/${manzana.folio}`) }}> */}\n { navigate(`${manzana.folio}`, {state:{manzana:manzana}}) }}>\n \n {/* */}\n \n \n { manzana.nombre}\n \n \n \n \n \n ))\n }\n \n \n \n \n );\n}\n\nexport { MenuManzanas }","import React, {useState,useEffect} from 'react';\nimport axios from 'axios';\nimport { BrowserRouter as Router, Routes, Route, useNavigate, useLocation, useParams, Link, NavLink, Navigate } from \"react-router-dom\";\nimport { Box, Skeleton } from '@mui/material';\nimport { DatosEtapa } from '../../components/DatosEtapa';\nimport { MenuManzanas } from '../../components/MenuManzanas';\n\nconst InventarioEtapa = () => {\n let navigate = useNavigate();\n const location = useLocation();\n let parametros = useParams();\n // const [etapa, setEtapa] = useState(location.state.etapa);\n const [etapa, setEtapa] = useState(null);\n //console.log(location.state.etapa);\n console.log(parametros);\n\n useEffect(() => {\n const token = !localStorage.getItem('token') ? '': localStorage.getItem('token');\n \n\n axios.get(`${process.env.REACT_APP_API_URL}/api/etapa/${parametros.etapa}`, {\n headers: {\n Authorization: `Bearer ${token}`\n }\n })\n .then((response) => {\n // handle success\n console.log(response);\n setEtapa(response.data) \n })\n .catch((error) => {\n // handle success\n console.log(error);\n navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n console.log('sae');\n });\n }, [setEtapa]);\n\n return(\n \n \n {\n !etapa ?\n :\n \n } \n \n \n {\n !etapa ?\n :\n \n } \n \n
\n );\n}\n\nexport { InventarioEtapa }","import { useEffect, useState } from \"react\";\nimport axios from \"axios\";\nimport { useNavigate, useLocation, useParams } from \"react-router-dom\";\n\nimport { Autocomplete, Avatar, Button, Container, Divider, Grid, Stack, TextField } from \"@mui/material\"\nimport { Box } from \"@mui/system\";\nimport AddAPhotoIcon from '@mui/icons-material/AddAPhoto';\n\nconst AddManzana = () => {\n let navigate = useNavigate();\n const location = useLocation();\n const parametros = useParams();\n const [etapa, setEtapa] = useState(location.state.etapa);\n // const [etapas, setEtapas] = useState([]);\n // const [selectedEtapa, setSelectedEtapa] = useState(null);\n\n const add = (event) => {\n event.preventDefault();\n const data = new FormData(event.currentTarget);\n const token = !localStorage.getItem('token') ? '': localStorage.getItem('token');\n const folio = !localStorage.getItem('id') ? '': localStorage.getItem('id');\n\n data.set('idEtapa', etapa.id);\n data.set('folioCreateBy', folio);\n\n axios.post(`${process.env.REACT_APP_API_URL}/api/manzana/`, \n {\n nombre: data.get('nombre'), \n idEtapa: etapa.id,\n\n folioCreateBy: folio,\n },\n {\n headers: {\n Authorization: `Bearer ${token}`\n } \n })\n .then((response) => {\n // handle success \n console.log(response);\n console.log('success axio');\n //navigate(-1, { replace: true });\n //etapa.manzanas.push(response.data);\n // navigate(`/cargas/inventario/${etapa.folio.toString()}`, {state:{etapa:etapa}});\n navigate(-1, { replace: true });\n })\n .catch((error) => {\n // handle success\n console.log(error);\n // navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n console.log('sabe');\n });\n }\n\n useEffect(() => {\n const token = !localStorage.getItem('token') ? '': localStorage.getItem('token');\n \n axios.get(`${process.env.REACT_APP_API_URL}/api/manzana/createview`, {\n headers: {\n Authorization: `Bearer ${token}`\n }\n })\n .then((response) => {\n // handle success\n console.log(response);\n //setEtapas(response.data.etapas);\n })\n .catch((error) => {\n // handle success\n console.log(error);\n // navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n });\n }, []);\n return(\n \n \n Nueva Manzana
\n \n }>\n \n \n {/* etapa.nombre}\n value={selectedEtapa}\n onChange={(event, newEtapa)=>{setSelectedEtapa(newEtapa);}}\n sx={{ width: 300 }}\n renderInput={(params) => }\n /> */}\n \n \n {/* */}\n {/* \n \n \n \n */}\n \n \n \n \n );\n}\n\nexport { AddManzana }","import { Outlet, useNavigate } from \"react-router-dom\";\n\nconst CargasManzana = (props) => {\n let navigate = useNavigate();\n //const [personajes, setPersonajes] = useState(props.datos.personajes || []);\n\n return(\n \n \n
\n );\n}\n\nexport { CargasManzana }","import * as React from 'react';\nimport { useEffect, useState } from \"react\";\nimport { Button, Container, Divider, Grid, Stack } from \"@mui/material\";\nimport Box from '@mui/material/Box';\nimport Typography from '@mui/material/Typography';\nimport DeleteIcon from '@mui/icons-material/Delete';\nimport EditIcon from '@mui/icons-material/Edit';\nimport LocationOnIcon from '@mui/icons-material/LocationOn';\nimport SignpostSharpIcon from '@mui/icons-material/SignpostSharp';\nimport { useNavigate } from 'react-router-dom';\n\nconst DatosManzana = (props) => {\n const navigate = useNavigate();\n const[manzana, setManzana] = useState(props.datos);\n return(\n \n \n \n }\n spacing={2}\n \n >\n {/* */}\n \n \n \n \n \n {manzana.nombre}\n \n \n Folio: {manzana.folio}\n \n \n Fraccionamiento\n \n \n Etapa\n \n \n Saltillo, Coahuila\n \n \n }\n sx={{ \n width: '100%',\n marginTop: 2\n }}\n onClick={()=>navigate('edit')}\n >\n Editar\n \n }\n sx={{ \n width: '100%',\n marginTop: 1\n }}\n >\n Borrar\n \n \n \n \n \n {/* \n }\n spacing={2}\n sx={{ backgroundColor: 'greenyellow' }}\n >\n \n \n \n {manzana.nombre}\n \n \n Folio: {manzana.folio}\n \n \n \n \n \n }>\n Editar\n \n }>\n Borrar\n \n */}\n \n \n );\n}\n\nexport { DatosManzana }","import { useNavigate } from \"react-router-dom\";\nimport { Button, Card, CardActionArea, CardActions, CardContent, CardMedia, Container, FormControl, FormControlLabel, Grid, InputAdornment, InputLabel, MenuItem, Select, Switch, TextField, Typography } from \"@mui/material\";\nimport { Box } from \"@mui/system\";\nimport AddIcon from '@mui/icons-material/Add';\nimport AddCircleOutlineIcon from '@mui/icons-material/AddCircleOutline';\nimport { useEffect, useState } from \"react\";\nimport axios from \"axios\";\n\nconst label = { inputProps: { 'aria-label': 'Switch demo' } };\n\nconst MenuLotes = ({ manzana }) => {\n let navigate = useNavigate();\n console.log({ manzana });\n const [listaEstatus, setListaEstatus] = useState([]);\n const [listaPromociones, setListaPromociones] = useState([]);\n\n const disabledLote = (e) => {\n const token = !localStorage.getItem('token') ? '': localStorage.getItem('token');\n const folio = !localStorage.getItem('id') ? '': localStorage.getItem('id'); \n\n axios.post(`${process.env.REACT_APP_API_URL}/api/lote/update`, \n {\n id: e.target.value,\n disponible: e.target.checked,\n },\n {\n headers: { \n Authorization: `Bearer ${token}`,\n } \n }\n )\n .then((response) => {\n // handle success \n console.log(response);\n console.log('success axio');\n //navigate(-1, { replace: true });\n })\n .catch((error) => {\n // handle success\n console.log(error);\n // navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n console.log('sabe');\n });\n }\n\n const changeEstatusLote = (e, idLote) => {\n const token = !localStorage.getItem('token') ? '': localStorage.getItem('token');\n const folio = !localStorage.getItem('id') ? '': localStorage.getItem('id'); \n\n axios.post(`${process.env.REACT_APP_API_URL}/api/lote/update`, \n {\n id: idLote,\n idEstatus: e.target.value,\n },\n {\n headers: { \n Authorization: `Bearer ${token}`,\n } \n }\n )\n .then((response) => {\n // handle success \n console.log(response);\n console.log('success axio');\n //navigate(-1, { replace: true });\n })\n .catch((error) => {\n // handle success\n console.log(error);\n // navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n console.log('sabe');\n });\n }\n\n const changePromocionLote = (e, idLote) => {\n const token = !localStorage.getItem('token') ? '': localStorage.getItem('token');\n const folio = !localStorage.getItem('id') ? '': localStorage.getItem('id'); \n\n axios.post(`${process.env.REACT_APP_API_URL}/api/lote/update`, \n {\n id: idLote,\n idPromocion: e.target.value,\n },\n {\n headers: { \n Authorization: `Bearer ${token}`,\n } \n }\n )\n .then((response) => {\n // handle success \n console.log(response);\n console.log('success axio');\n //navigate(-1, { replace: true });\n })\n .catch((error) => {\n // handle success\n console.log(error);\n // navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n console.log('sabe');\n });\n }\n\n const changePrecioLote = (value, idLote) => {\n // console.log(value, idLote);\n const token = !localStorage.getItem('token') ? '': localStorage.getItem('token');\n const folio = !localStorage.getItem('id') ? '': localStorage.getItem('id'); \n\n axios.post(`${process.env.REACT_APP_API_URL}/api/lote/update`, \n {\n id: idLote,\n precio: value,\n },\n {\n headers: { \n Authorization: `Bearer ${token}`,\n } \n }\n )\n .then((response) => {\n // handle success \n console.log(response);\n console.log('success axio');\n //navigate(-1, { replace: true });\n })\n .catch((error) => {\n // handle success\n console.log(error);\n // navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n console.log('sabe');\n });\n }\n\n const [isChecked, setIsChecked] = useState(() =>\n manzana.lotes.map((lote) => lote.disponible)\n );\n const [estatusLote, setEstatusLote] = useState(() =>\n manzana.lotes.map((lote) => lote.idEstatus)\n );\n const [promocionLote, setPromocionLote] = useState(() =>\n manzana.lotes.map((lote) => lote.idPromocion)\n );\n const [precioLote, setPrecioLote] = useState(() =>\n manzana.lotes.map((lote) => lote.precio)\n );\n const handleChange = (lote) => (event) => {\n console.log(lote.id, event.target.value);\n }\n const changeEstatusLoteFront = (index, e, lote) => {\n //console.log(index, e.target, lote); return;\n setEstatusLote((estatus) => {\n return estatus.map((c, i) => {\n if (i === index) return e.target.value;\n return c;\n });\n });\n changeEstatusLote(e, lote.id);\n // if(e.target.checked){\n // console.log('se mostrara disponible', e.target.value);\n // }\n // else{\n // console.log('se mostrara No disponible', e.target.value);\n // }\n };\n const isCheckboxChecked = (index, e) => {\n setIsChecked((isChecked) => {\n return isChecked.map((c, i) => {\n if (i === index) return e.target.checked;\n return c;\n });\n });\n disabledLote(e)\n if(e.target.checked){\n console.log('se mostrara disponible', e.target.value);\n }\n else{\n console.log('se mostrara No disponible', e.target.value);\n }\n };\n const changePromocionLoteFront = (index, e, lote) => {\n //console.log(index, e.target, lote); return;\n setPromocionLote((estatus) => {\n return estatus.map((c, i) => {\n if (i === index) return e.target.value;\n return c;\n });\n });\n changePromocionLote(e, lote.id);\n // if(e.target.checked){\n // console.log('se mostrara disponible', e.target.value);\n // }\n // else{\n // console.log('se mostrara No disponible', e.target.value);\n // }\n };\n const changePrecioLoteFront = (index, e) => {\n // console.log('PRECIO A CAMBIAR',index, e.target, lote); return;\n setPrecioLote((estatus) => {\n return estatus.map((c, i) => {\n if (i === index) return e.target.value;\n return c;\n });\n });\n // changePromocionLote(e, lote.id);\n // if(e.target.checked){\n // console.log('se mostrara disponible', e.target.value);\n // }\n // else{\n // console.log('se mostrara No disponible', e.target.value);\n // }\n };\n useEffect(() => {\n const token = !localStorage.getItem('token') ? '': localStorage.getItem('token');\n \n\n axios.get(`${process.env.REACT_APP_API_URL}/api/estatus`, {\n headers: {\n Authorization: `Bearer ${token}`\n }\n })\n .then((response) => {\n // handle success\n console.log(response);\n setListaEstatus(response.data);\n })\n .catch((error) => {\n // handle success\n console.log(error);\n navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n console.log('sae');\n });\n axios.get(`${process.env.REACT_APP_API_URL}/api/promocion/only-active`, {\n headers: {\n Authorization: `Bearer ${token}`\n }\n })\n .then((response) => {\n // handle success\n console.log(response);\n setListaPromociones(response.data);\n })\n .catch((error) => {\n // handle success\n console.log(error);\n navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n console.log('sae');\n });\n }, []);\n return(\n \n \n \n Lotes
\n \n \n \n \n \n { navigate('add', {state:{manzana:manzana}}) }}>\n \n \n \n Agregar Lote\n \n \n \n \n \n {\n manzana.lotes.map((lote, index) => ( \n \n \n {/* { navigate(`/${lote.folio}`) }}> */}\n { navigate(`${lote.folio}`) }}>\n \n {\n lote.fotos.length > 0 ? (\n \n \n ) : (\n \n )\n } \n \n Lote:\n \n \n { lote.numeroDeLote}\n \n \n \n \n \n \n \n \n Estatus\n \n \n \n \n { isCheckboxChecked(index, e); }}\n />\n }\n label=\"Disponible\"\n labelPlacement=\"start\"\n />\n {/* { isCheckboxChecked(index, e); }}\n /> */}\n \n \n \n Promocion\n \n \n \n \n \n $\n // endAdornment: tipoDescuento === 2 ? (%) : null,\n }}\n defaultValue={precioLote[index]}\n onChange={(e) => changePrecioLoteFront(index, e)}\n name=\"descuento\"\n />\n \n \n \n \n \n \n \n \n \n \n ))\n }\n \n \n \n {/* {\n productos.length < 1 ? nada
:\n productos.map((producto) => ( \n {producto.name}
\n ))\n } */}\n \n );\n}\n\nexport { MenuLotes }","import React, {useState,useEffect} from 'react';\nimport axios from 'axios';\nimport { BrowserRouter as Router, Routes, Route, useNavigate, useLocation, useParams, Link, NavLink, Navigate } from \"react-router-dom\";\nimport { Box, Skeleton } from '@mui/material';\nimport { DatosManzana } from '../../components/DatosManzana';\nimport { MenuLotes } from '../../components/MenuLotes';\n\nconst InventarioManzana = () => {\n let navigate = useNavigate();\n const location = useLocation();\n let parametros = useParams();\n // const [etapa, setEtapa] = useState(location.state.etapa);\n const [manzana, setManzana] = useState(null);\n //console.log(location.state.etapa);\n console.log(parametros);\n \n useEffect(() => {\n const token = !localStorage.getItem('token') ? '': localStorage.getItem('token');\n \n\n axios.get(`${process.env.REACT_APP_API_URL}/api/manzana/${parametros.manzana}`, {\n headers: {\n Authorization: `Bearer ${token}`\n }\n })\n .then((response) => {\n // handle success\n console.log(response);\n setManzana(response.data) \n })\n .catch((error) => {\n // handle success\n console.log(error);\n navigate('/usuarios/login');\n })\n .then(() => {\n // handle success\n console.log('sae');\n });\n }, [setManzana]);\n\n return(\n \n \n {\n !manzana ?\n :\n \n } \n \n \n {\n !manzana ?\n :\n \n } \n \n
\n );\n}\n\nexport { InventarioManzana }","var _defs, _rect;\n\nvar _excluded = [\"title\", \"titleId\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\nimport * as React from \"react\";\n\nfunction SvgBanioIcon(_ref, svgRef) {\n var title = _ref.title,\n titleId = _ref.titleId,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return /*#__PURE__*/React.createElement(\"svg\", _extends({\n xmlns: \"http://www.w3.org/2000/svg\",\n xmlnsXlink: \"http://www.w3.org/1999/xlink\",\n width: 24,\n height: 24,\n viewBox: \"0 0 24 24\",\n ref: svgRef,\n \"aria-labelledby\": titleId\n }, props), title ? /*#__PURE__*/React.createElement(\"title\", {\n id: titleId\n }, title) : null, _defs || (_defs = /*#__PURE__*/React.createElement(\"defs\", null, /*#__PURE__*/React.createElement(\"pattern\", {\n id: \"pattern\",\n preserveAspectRatio: \"xMidYMid slice\",\n width: \"100%\",\n height: \"100%\",\n viewBox: \"0 0 512 512\"\n }, /*#__PURE__*/React.createElement(\"image\", {\n width: 512,\n height: 512,\n xlinkHref: \"\"\n })))), _rect || (_rect = /*#__PURE__*/React.createElement(\"rect\", {\n id: \"Image_1\",\n \"data-name\": \"Image 1\",\n width: 24,\n height: 24,\n fill: \"url(#pattern)\"\n })));\n}\n\nvar ForwardRef = /*#__PURE__*/React.forwardRef(SvgBanioIcon);\nexport default __webpack_public_path__ + \"static/media/banio_icon.10035c4838b0da34491d5c08bf633234.svg\";\nexport { ForwardRef as ReactComponent };","var _defs, _rect;\n\nvar _excluded = [\"title\", \"titleId\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\nimport * as React from \"react\";\n\nfunction SvgTerrenoIcon(_ref, svgRef) {\n var title = _ref.title,\n titleId = _ref.titleId,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return /*#__PURE__*/React.createElement(\"svg\", _extends({\n xmlns: \"http://www.w3.org/2000/svg\",\n xmlnsXlink: \"http://www.w3.org/1999/xlink\",\n width: 24,\n height: 24,\n viewBox: \"0 0 24 24\",\n ref: svgRef,\n \"aria-labelledby\": titleId\n }, props), title ? /*#__PURE__*/React.createElement(\"title\", {\n id: titleId\n }, title) : null, _defs || (_defs = /*#__PURE__*/React.createElement(\"defs\", null, /*#__PURE__*/React.createElement(\"pattern\", {\n id: \"pattern\",\n preserveAspectRatio: \"xMidYMid slice\",\n width: \"100%\",\n height: \"100%\",\n viewBox: \"0 0 512 512\"\n }, /*#__PURE__*/React.createElement(\"image\", {\n width: 512,\n height: 512,\n xlinkHref: \"\"\n })))), _rect || (_rect = /*#__PURE__*/React.createElement(\"rect\", {\n id: \"Image_1\",\n \"data-name\": \"Image 1\",\n width: 24,\n height: 24,\n fill: \"url(#pattern)\"\n })));\n}\n\nvar ForwardRef = /*#__PURE__*/React.forwardRef(SvgTerrenoIcon);\nexport default __webpack_public_path__ + \"static/media/terreno_icon.795c57353a0a64ea8ab726455b4de067.svg\";\nexport { ForwardRef as ReactComponent };","var _defs, _rect;\n\nvar _excluded = [\"title\", \"titleId\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\nimport * as React from \"react\";\n\nfunction SvgConstruccionIcon(_ref, svgRef) {\n var title = _ref.title,\n titleId = _ref.titleId,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return /*#__PURE__*/React.createElement(\"svg\", _extends({\n xmlns: \"http://www.w3.org/2000/svg\",\n xmlnsXlink: \"http://www.w3.org/1999/xlink\",\n width: 24,\n height: 24,\n viewBox: \"0 0 24 24\",\n ref: svgRef,\n \"aria-labelledby\": titleId\n }, props), title ? /*#__PURE__*/React.createElement(\"title\", {\n id: titleId\n }, title) : null, _defs || (_defs = /*#__PURE__*/React.createElement(\"defs\", null, /*#__PURE__*/React.createElement(\"pattern\", {\n id: \"pattern\",\n preserveAspectRatio: \"xMidYMid slice\",\n width: \"100%\",\n height: \"100%\",\n viewBox: \"0 0 512 512\"\n }, /*#__PURE__*/React.createElement(\"image\", {\n width: 512,\n height: 512,\n xlinkHref: \"\"\n })))), _rect || (_rect = /*#__PURE__*/React.createElement(\"rect\", {\n id: \"Image_1\",\n \"data-name\": \"Image 1\",\n width: 24,\n height: 24,\n fill: \"url(#pattern)\"\n })));\n}\n\nvar ForwardRef = /*#__PURE__*/React.forwardRef(SvgConstruccionIcon);\nexport default __webpack_public_path__ + \"static/media/construccion_icon.238727a4f2104c3ea685a4d21375ff62.svg\";\nexport { ForwardRef as ReactComponent };","var _defs, _rect;\n\nvar _excluded = [\"title\", \"titleId\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\nimport * as React from \"react\";\n\nfunction SvgHabitacionesIcon(_ref, svgRef) {\n var title = _ref.title,\n titleId = _ref.titleId,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return /*#__PURE__*/React.createElement(\"svg\", _extends({\n xmlns: \"http://www.w3.org/2000/svg\",\n xmlnsXlink: \"http://www.w3.org/1999/xlink\",\n width: 24,\n height: 24,\n viewBox: \"0 0 24 24\",\n ref: svgRef,\n \"aria-labelledby\": titleId\n }, props), title ? /*#__PURE__*/React.createElement(\"title\", {\n id: titleId\n }, title) : null, _defs || (_defs = /*#__PURE__*/React.createElement(\"defs\", null, /*#__PURE__*/React.createElement(\"pattern\", {\n id: \"pattern\",\n preserveAspectRatio: \"xMidYMid slice\",\n width: \"100%\",\n height: \"100%\",\n viewBox: \"0 0 512 512\"\n }, /*#__PURE__*/React.createElement(\"image\", {\n width: 512,\n height: 512,\n xlinkHref: \"\"\n })))), _rect || (_rect = /*#__PURE__*/React.createElement(\"rect\", {\n id: \"Image_1\",\n \"data-name\": \"Image 1\",\n width: 24,\n height: 24,\n fill: \"url(#pattern)\"\n })));\n}\n\nvar ForwardRef = /*#__PURE__*/React.forwardRef(SvgHabitacionesIcon);\nexport default __webpack_public_path__ + \"static/media/habitaciones_icon.7a703725d04e33e8d3960f7a66a40700.svg\";\nexport { ForwardRef as ReactComponent };","var _defs, _rect;\n\nvar _excluded = [\"title\", \"titleId\"];\n\nfunction _extends() { _extends = Object.assign ? Object.assign.bind() : function (target) { for (var i = 1; i < arguments.length; i++) { var source = arguments[i]; for (var key in source) { if (Object.prototype.hasOwnProperty.call(source, key)) { target[key] = source[key]; } } } return target; }; return _extends.apply(this, arguments); }\n\nfunction _objectWithoutProperties(source, excluded) { if (source == null) return {}; var target = _objectWithoutPropertiesLoose(source, excluded); var key, i; if (Object.getOwnPropertySymbols) { var sourceSymbolKeys = Object.getOwnPropertySymbols(source); for (i = 0; i < sourceSymbolKeys.length; i++) { key = sourceSymbolKeys[i]; if (excluded.indexOf(key) >= 0) continue; if (!Object.prototype.propertyIsEnumerable.call(source, key)) continue; target[key] = source[key]; } } return target; }\n\nfunction _objectWithoutPropertiesLoose(source, excluded) { if (source == null) return {}; var target = {}; var sourceKeys = Object.keys(source); var key, i; for (i = 0; i < sourceKeys.length; i++) { key = sourceKeys[i]; if (excluded.indexOf(key) >= 0) continue; target[key] = source[key]; } return target; }\n\nimport * as React from \"react\";\n\nfunction SvgCasita(_ref, svgRef) {\n var title = _ref.title,\n titleId = _ref.titleId,\n props = _objectWithoutProperties(_ref, _excluded);\n\n return /*#__PURE__*/React.createElement(\"svg\", _extends({\n xmlns: \"http://www.w3.org/2000/svg\",\n xmlnsXlink: \"http://www.w3.org/1999/xlink\",\n width: 24,\n height: 24,\n viewBox: \"0 0 24 24\",\n ref: svgRef,\n \"aria-labelledby\": titleId\n }, props), title ? /*#__PURE__*/React.createElement(\"title\", {\n id: titleId\n }, title) : null, _defs || (_defs = /*#__PURE__*/React.createElement(\"defs\", null, /*#__PURE__*/React.createElement(\"pattern\", {\n id: \"pattern\",\n preserveAspectRatio: \"xMidYMid slice\",\n width: \"100%\",\n height: \"100%\",\n viewBox: \"0 0 512 512\"\n }, /*#__PURE__*/React.createElement(\"image\", {\n width: 512,\n height: 512,\n xlinkHref: \"\"\n })))), _rect || (_rect = /*#__PURE__*/React.createElement(\"rect\", {\n id: \"Image_1\",\n \"data-name\": \"Image 1\",\n width: 24,\n height: 24,\n fill: \"url(#pattern)\"\n })));\n}\n\nvar ForwardRef = /*#__PURE__*/React.forwardRef(SvgCasita);\nexport default __webpack_public_path__ + \"static/media/casita.7a703725d04e33e8d3960f7a66a40700.svg\";\nexport { ForwardRef as ReactComponent };","// Polyfills\n\nif ( Number.EPSILON === undefined ) {\n\n\tNumber.EPSILON = Math.pow( 2, - 52 );\n\n}\n\nif ( Number.isInteger === undefined ) {\n\n\t// Missing in IE\n\t// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isInteger\n\n\tNumber.isInteger = function ( value ) {\n\n\t\treturn typeof value === 'number' && isFinite( value ) && Math.floor( value ) === value;\n\n\t};\n\n}\n\n//\n\nif ( Math.sign === undefined ) {\n\n\t// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/sign\n\n\tMath.sign = function ( x ) {\n\n\t\treturn ( x < 0 ) ? - 1 : ( x > 0 ) ? 1 : + x;\n\n\t};\n\n}\n\nif ( 'name' in Function.prototype === false ) {\n\n\t// Missing in IE\n\t// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function/name\n\n\tObject.defineProperty( Function.prototype, 'name', {\n\n\t\tget: function () {\n\n\t\t\treturn this.toString().match( /^\\s*function\\s*([^\\(\\s]*)/ )[ 1 ];\n\n\t\t}\n\n\t} );\n\n}\n\nif ( Object.assign === undefined ) {\n\n\t// Missing in IE\n\t// https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/assign\n\n\t( function () {\n\n\t\tObject.assign = function ( target ) {\n\n\t\t\tif ( target === undefined || target === null ) {\n\n\t\t\t\tthrow new TypeError( 'Cannot convert undefined or null to object' );\n\n\t\t\t}\n\n\t\t\tvar output = Object( target );\n\n\t\t\tfor ( var index = 1; index < arguments.length; index ++ ) {\n\n\t\t\t\tvar source = arguments[ index ];\n\n\t\t\t\tif ( source !== undefined && source !== null ) {\n\n\t\t\t\t\tfor ( var nextKey in source ) {\n\n\t\t\t\t\t\tif ( Object.prototype.hasOwnProperty.call( source, nextKey ) ) {\n\n\t\t\t\t\t\t\toutput[ nextKey ] = source[ nextKey ];\n\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}\n\n\t\t\t\t}\n\n\t\t\t}\n\n\t\t\treturn output;\n\n\t\t};\n\n\t} )();\n\n}\n\n/**\n * https://github.com/mrdoob/eventdispatcher.js/\n */\n\nfunction EventDispatcher() {}\n\nObject.assign( EventDispatcher.prototype, {\n\n\taddEventListener: function ( type, listener ) {\n\n\t\tif ( this._listeners === undefined ) this._listeners = {};\n\n\t\tvar listeners = this._listeners;\n\n\t\tif ( listeners[ type ] === undefined ) {\n\n\t\t\tlisteners[ type ] = [];\n\n\t\t}\n\n\t\tif ( listeners[ type ].indexOf( listener ) === - 1 ) {\n\n\t\t\tlisteners[ type ].push( listener );\n\n\t\t}\n\n\t},\n\n\thasEventListener: function ( type, listener ) {\n\n\t\tif ( this._listeners === undefined ) return false;\n\n\t\tvar listeners = this._listeners;\n\n\t\treturn listeners[ type ] !== undefined && listeners[ type ].indexOf( listener ) !== - 1;\n\n\t},\n\n\tremoveEventListener: function ( type, listener ) {\n\n\t\tif ( this._listeners === undefined ) return;\n\n\t\tvar listeners = this._listeners;\n\t\tvar listenerArray = listeners[ type ];\n\n\t\tif ( listenerArray !== undefined ) {\n\n\t\t\tvar index = listenerArray.indexOf( listener );\n\n\t\t\tif ( index !== - 1 ) {\n\n\t\t\t\tlistenerArray.splice( index, 1 );\n\n\t\t\t}\n\n\t\t}\n\n\t},\n\n\tdispatchEvent: function ( event ) {\n\n\t\tif ( this._listeners === undefined ) return;\n\n\t\tvar listeners = this._listeners;\n\t\tvar listenerArray = listeners[ event.type ];\n\n\t\tif ( listenerArray !== undefined ) {\n\n\t\t\tevent.target = this;\n\n\t\t\tvar array = listenerArray.slice( 0 );\n\n\t\t\tfor ( var i = 0, l = array.length; i < l; i ++ ) {\n\n\t\t\t\tarray[ i ].call( this, event );\n\n\t\t\t}\n\n\t\t}\n\n\t}\n\n} );\n\nvar REVISION = '105';\nvar MOUSE = { LEFT: 0, MIDDLE: 1, RIGHT: 2 };\nvar CullFaceNone = 0;\nvar CullFaceBack = 1;\nvar CullFaceFront = 2;\nvar CullFaceFrontBack = 3;\nvar FrontFaceDirectionCW = 0;\nvar FrontFaceDirectionCCW = 1;\nvar BasicShadowMap = 0;\nvar PCFShadowMap = 1;\nvar PCFSoftShadowMap = 2;\nvar FrontSide = 0;\nvar BackSide = 1;\nvar DoubleSide = 2;\nvar FlatShading = 1;\nvar SmoothShading = 2;\nvar NoColors = 0;\nvar FaceColors = 1;\nvar VertexColors = 2;\nvar NoBlending = 0;\nvar NormalBlending = 1;\nvar AdditiveBlending = 2;\nvar SubtractiveBlending = 3;\nvar MultiplyBlending = 4;\nvar CustomBlending = 5;\nvar AddEquation = 100;\nvar SubtractEquation = 101;\nvar ReverseSubtractEquation = 102;\nvar MinEquation = 103;\nvar MaxEquation = 104;\nvar ZeroFactor = 200;\nvar OneFactor = 201;\nvar SrcColorFactor = 202;\nvar OneMinusSrcColorFactor = 203;\nvar SrcAlphaFactor = 204;\nvar OneMinusSrcAlphaFactor = 205;\nvar DstAlphaFactor = 206;\nvar OneMinusDstAlphaFactor = 207;\nvar DstColorFactor = 208;\nvar OneMinusDstColorFactor = 209;\nvar SrcAlphaSaturateFactor = 210;\nvar NeverDepth = 0;\nvar AlwaysDepth = 1;\nvar LessDepth = 2;\nvar LessEqualDepth = 3;\nvar EqualDepth = 4;\nvar GreaterEqualDepth = 5;\nvar GreaterDepth = 6;\nvar NotEqualDepth = 7;\nvar MultiplyOperation = 0;\nvar MixOperation = 1;\nvar AddOperation = 2;\nvar NoToneMapping = 0;\nvar LinearToneMapping = 1;\nvar ReinhardToneMapping = 2;\nvar Uncharted2ToneMapping = 3;\nvar CineonToneMapping = 4;\nvar ACESFilmicToneMapping = 5;\n\nvar UVMapping = 300;\nvar CubeReflectionMapping = 301;\nvar CubeRefractionMapping = 302;\nvar EquirectangularReflectionMapping = 303;\nvar EquirectangularRefractionMapping = 304;\nvar SphericalReflectionMapping = 305;\nvar CubeUVReflectionMapping = 306;\nvar CubeUVRefractionMapping = 307;\nvar RepeatWrapping = 1000;\nvar ClampToEdgeWrapping = 1001;\nvar MirroredRepeatWrapping = 1002;\nvar NearestFilter = 1003;\nvar NearestMipMapNearestFilter = 1004;\nvar NearestMipMapLinearFilter = 1005;\nvar LinearFilter = 1006;\nvar LinearMipMapNearestFilter = 1007;\nvar LinearMipMapLinearFilter = 1008;\nvar UnsignedByteType = 1009;\nvar ByteType = 1010;\nvar ShortType = 1011;\nvar UnsignedShortType = 1012;\nvar IntType = 1013;\nvar UnsignedIntType = 1014;\nvar FloatType = 1015;\nvar HalfFloatType = 1016;\nvar UnsignedShort4444Type = 1017;\nvar UnsignedShort5551Type = 1018;\nvar UnsignedShort565Type = 1019;\nvar UnsignedInt248Type = 1020;\nvar AlphaFormat = 1021;\nvar RGBFormat = 1022;\nvar RGBAFormat = 1023;\nvar LuminanceFormat = 1024;\nvar LuminanceAlphaFormat = 1025;\nvar RGBEFormat = RGBAFormat;\nvar DepthFormat = 1026;\nvar DepthStencilFormat = 1027;\nvar RedFormat = 1028;\nvar RGB_S3TC_DXT1_Format = 33776;\nvar RGBA_S3TC_DXT1_Format = 33777;\nvar RGBA_S3TC_DXT3_Format = 33778;\nvar RGBA_S3TC_DXT5_Format = 33779;\nvar RGB_PVRTC_4BPPV1_Format = 35840;\nvar RGB_PVRTC_2BPPV1_Format = 35841;\nvar RGBA_PVRTC_4BPPV1_Format = 35842;\nvar RGBA_PVRTC_2BPPV1_Format = 35843;\nvar RGB_ETC1_Format = 36196;\nvar RGBA_ASTC_4x4_Format = 37808;\nvar RGBA_ASTC_5x4_Format = 37809;\nvar RGBA_ASTC_5x5_Format = 37810;\nvar RGBA_ASTC_6x5_Format = 37811;\nvar RGBA_ASTC_6x6_Format = 37812;\nvar RGBA_ASTC_8x5_Format = 37813;\nvar RGBA_ASTC_8x6_Format = 37814;\nvar RGBA_ASTC_8x8_Format = 37815;\nvar RGBA_ASTC_10x5_Format = 37816;\nvar RGBA_ASTC_10x6_Format = 37817;\nvar RGBA_ASTC_10x8_Format = 37818;\nvar RGBA_ASTC_10x10_Format = 37819;\nvar RGBA_ASTC_12x10_Format = 37820;\nvar RGBA_ASTC_12x12_Format = 37821;\nvar LoopOnce = 2200;\nvar LoopRepeat = 2201;\nvar LoopPingPong = 2202;\nvar InterpolateDiscrete = 2300;\nvar InterpolateLinear = 2301;\nvar InterpolateSmooth = 2302;\nvar ZeroCurvatureEnding = 2400;\nvar ZeroSlopeEnding = 2401;\nvar WrapAroundEnding = 2402;\nvar TrianglesDrawMode = 0;\nvar TriangleStripDrawMode = 1;\nvar TriangleFanDrawMode = 2;\nvar LinearEncoding = 3000;\nvar sRGBEncoding = 3001;\nvar GammaEncoding = 3007;\nvar RGBEEncoding = 3002;\nvar LogLuvEncoding = 3003;\nvar RGBM7Encoding = 3004;\nvar RGBM16Encoding = 3005;\nvar RGBDEncoding = 3006;\nvar BasicDepthPacking = 3200;\nvar RGBADepthPacking = 3201;\nvar TangentSpaceNormalMap = 0;\nvar ObjectSpaceNormalMap = 1;\n\n/**\n * @author alteredq / http://alteredqualia.com/\n * @author mrdoob / http://mrdoob.com/\n */\n\nvar _Math = {\n\n\tDEG2RAD: Math.PI / 180,\n\tRAD2DEG: 180 / Math.PI,\n\n\tgenerateUUID: ( function () {\n\n\t\t// http://stackoverflow.com/questions/105034/how-to-create-a-guid-uuid-in-javascript/21963136#21963136\n\n\t\tvar lut = [];\n\n\t\tfor ( var i = 0; i < 256; i ++ ) {\n\n\t\t\tlut[ i ] = ( i < 16 ? '0' : '' ) + ( i ).toString( 16 );\n\n\t\t}\n\n\t\treturn function generateUUID() {\n\n\t\t\tvar d0 = Math.random() * 0xffffffff | 0;\n\t\t\tvar d1 = Math.random() * 0xffffffff | 0;\n\t\t\tvar d2 = Math.random() * 0xffffffff | 0;\n\t\t\tvar d3 = Math.random() * 0xffffffff | 0;\n\t\t\tvar uuid = lut[ d0 & 0xff ] + lut[ d0 >> 8 & 0xff ] + lut[ d0 >> 16 & 0xff ] + lut[ d0 >> 24 & 0xff ] + '-' +\n\t\t\t\tlut[ d1 & 0xff ] + lut[ d1 >> 8 & 0xff ] + '-' + lut[ d1 >> 16 & 0x0f | 0x40 ] + lut[ d1 >> 24 & 0xff ] + '-' +\n\t\t\t\tlut[ d2 & 0x3f | 0x80 ] + lut[ d2 >> 8 & 0xff ] + '-' + lut[ d2 >> 16 & 0xff ] + lut[ d2 >> 24 & 0xff ] +\n\t\t\t\tlut[ d3 & 0xff ] + lut[ d3 >> 8 & 0xff ] + lut[ d3 >> 16 & 0xff ] + lut[ d3 >> 24 & 0xff ];\n\n\t\t\t// .toUpperCase() here flattens concatenated strings to save heap memory space.\n\t\t\treturn uuid.toUpperCase();\n\n\t\t};\n\n\t} )(),\n\n\tclamp: function ( value, min, max ) {\n\n\t\treturn Math.max( min, Math.min( max, value ) );\n\n\t},\n\n\t// compute euclidian modulo of m % n\n\t// https://en.wikipedia.org/wiki/Modulo_operation\n\n\teuclideanModulo: function ( n, m ) {\n\n\t\treturn ( ( n % m ) + m ) % m;\n\n\t},\n\n\t// Linear mapping from range to range \n\n\tmapLinear: function ( x, a1, a2, b1, b2 ) {\n\n\t\treturn b1 + ( x - a1 ) * ( b2 - b1 ) / ( a2 - a1 );\n\n\t},\n\n\t// https://en.wikipedia.org/wiki/Linear_interpolation\n\n\tlerp: function ( x, y, t ) {\n\n\t\treturn ( 1 - t ) * x + t * y;\n\n\t},\n\n\t// http://en.wikipedia.org/wiki/Smoothstep\n\n\tsmoothstep: function ( x, min, max ) {\n\n\t\tif ( x <= min ) return 0;\n\t\tif ( x >= max ) return 1;\n\n\t\tx = ( x - min ) / ( max - min );\n\n\t\treturn x * x * ( 3 - 2 * x );\n\n\t},\n\n\tsmootherstep: function ( x, min, max ) {\n\n\t\tif ( x <= min ) return 0;\n\t\tif ( x >= max ) return 1;\n\n\t\tx = ( x - min ) / ( max - min );\n\n\t\treturn x * x * x * ( x * ( x * 6 - 15 ) + 10 );\n\n\t},\n\n\t// Random integer from interval\n\n\trandInt: function ( low, high ) {\n\n\t\treturn low + Math.floor( Math.random() * ( high - low + 1 ) );\n\n\t},\n\n\t// Random float from interval\n\n\trandFloat: function ( low, high ) {\n\n\t\treturn low + Math.random() * ( high - low );\n\n\t},\n\n\t// Random float from <-range/2, range/2> interval\n\n\trandFloatSpread: function ( range ) {\n\n\t\treturn range * ( 0.5 - Math.random() );\n\n\t},\n\n\tdegToRad: function ( degrees ) {\n\n\t\treturn degrees * _Math.DEG2RAD;\n\n\t},\n\n\tradToDeg: function ( radians ) {\n\n\t\treturn radians * _Math.RAD2DEG;\n\n\t},\n\n\tisPowerOfTwo: function ( value ) {\n\n\t\treturn ( value & ( value - 1 ) ) === 0 && value !== 0;\n\n\t},\n\n\tceilPowerOfTwo: function ( value ) {\n\n\t\treturn Math.pow( 2, Math.ceil( Math.log( value ) / Math.LN2 ) );\n\n\t},\n\n\tfloorPowerOfTwo: function ( value ) {\n\n\t\treturn Math.pow( 2, Math.floor( Math.log( value ) / Math.LN2 ) );\n\n\t}\n\n};\n\n/**\n * @author mrdoob / http://mrdoob.com/\n * @author philogb / http://blog.thejit.org/\n * @author egraether / http://egraether.com/\n * @author zz85 / http://www.lab4games.net/zz85/blog\n */\n\nfunction Vector2( x, y ) {\n\n\tthis.x = x || 0;\n\tthis.y = y || 0;\n\n}\n\nObject.defineProperties( Vector2.prototype, {\n\n\t\"width\": {\n\n\t\tget: function () {\n\n\t\t\treturn this.x;\n\n\t\t},\n\n\t\tset: function ( value ) {\n\n\t\t\tthis.x = value;\n\n\t\t}\n\n\t},\n\n\t\"height\": {\n\n\t\tget: function () {\n\n\t\t\treturn this.y;\n\n\t\t},\n\n\t\tset: function ( value ) {\n\n\t\t\tthis.y = value;\n\n\t\t}\n\n\t}\n\n} );\n\nObject.assign( Vector2.prototype, {\n\n\tisVector2: true,\n\n\tset: function ( x, y ) {\n\n\t\tthis.x = x;\n\t\tthis.y = y;\n\n\t\treturn this;\n\n\t},\n\n\tsetScalar: function ( scalar ) {\n\n\t\tthis.x = scalar;\n\t\tthis.y = scalar;\n\n\t\treturn this;\n\n\t},\n\n\tsetX: function ( x ) {\n\n\t\tthis.x = x;\n\n\t\treturn this;\n\n\t},\n\n\tsetY: function ( y ) {\n\n\t\tthis.y = y;\n\n\t\treturn this;\n\n\t},\n\n\tsetComponent: function ( index, value ) {\n\n\t\tswitch ( index ) {\n\n\t\t\tcase 0: this.x = value; break;\n\t\t\tcase 1: this.y = value; break;\n\t\t\tdefault: throw new Error( 'index is out of range: ' + index );\n\n\t\t}\n\n\t\treturn this;\n\n\t},\n\n\tgetComponent: function ( index ) {\n\n\t\tswitch ( index ) {\n\n\t\t\tcase 0: return this.x;\n\t\t\tcase 1: return this.y;\n\t\t\tdefault: throw new Error( 'index is out of range: ' + index );\n\n\t\t}\n\n\t},\n\n\tclone: function () {\n\n\t\treturn new this.constructor( this.x, this.y );\n\n\t},\n\n\tcopy: function ( v ) {\n\n\t\tthis.x = v.x;\n\t\tthis.y = v.y;\n\n\t\treturn this;\n\n\t},\n\n\tadd: function ( v, w ) {\n\n\t\tif ( w !== undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Vector2: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );\n\t\t\treturn this.addVectors( v, w );\n\n\t\t}\n\n\t\tthis.x += v.x;\n\t\tthis.y += v.y;\n\n\t\treturn this;\n\n\t},\n\n\taddScalar: function ( s ) {\n\n\t\tthis.x += s;\n\t\tthis.y += s;\n\n\t\treturn this;\n\n\t},\n\n\taddVectors: function ( a, b ) {\n\n\t\tthis.x = a.x + b.x;\n\t\tthis.y = a.y + b.y;\n\n\t\treturn this;\n\n\t},\n\n\taddScaledVector: function ( v, s ) {\n\n\t\tthis.x += v.x * s;\n\t\tthis.y += v.y * s;\n\n\t\treturn this;\n\n\t},\n\n\tsub: function ( v, w ) {\n\n\t\tif ( w !== undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Vector2: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );\n\t\t\treturn this.subVectors( v, w );\n\n\t\t}\n\n\t\tthis.x -= v.x;\n\t\tthis.y -= v.y;\n\n\t\treturn this;\n\n\t},\n\n\tsubScalar: function ( s ) {\n\n\t\tthis.x -= s;\n\t\tthis.y -= s;\n\n\t\treturn this;\n\n\t},\n\n\tsubVectors: function ( a, b ) {\n\n\t\tthis.x = a.x - b.x;\n\t\tthis.y = a.y - b.y;\n\n\t\treturn this;\n\n\t},\n\n\tmultiply: function ( v ) {\n\n\t\tthis.x *= v.x;\n\t\tthis.y *= v.y;\n\n\t\treturn this;\n\n\t},\n\n\tmultiplyScalar: function ( scalar ) {\n\n\t\tthis.x *= scalar;\n\t\tthis.y *= scalar;\n\n\t\treturn this;\n\n\t},\n\n\tdivide: function ( v ) {\n\n\t\tthis.x /= v.x;\n\t\tthis.y /= v.y;\n\n\t\treturn this;\n\n\t},\n\n\tdivideScalar: function ( scalar ) {\n\n\t\treturn this.multiplyScalar( 1 / scalar );\n\n\t},\n\n\tapplyMatrix3: function ( m ) {\n\n\t\tvar x = this.x, y = this.y;\n\t\tvar e = m.elements;\n\n\t\tthis.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ];\n\t\tthis.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ];\n\n\t\treturn this;\n\n\t},\n\n\tmin: function ( v ) {\n\n\t\tthis.x = Math.min( this.x, v.x );\n\t\tthis.y = Math.min( this.y, v.y );\n\n\t\treturn this;\n\n\t},\n\n\tmax: function ( v ) {\n\n\t\tthis.x = Math.max( this.x, v.x );\n\t\tthis.y = Math.max( this.y, v.y );\n\n\t\treturn this;\n\n\t},\n\n\tclamp: function ( min, max ) {\n\n\t\t// assumes min < max, componentwise\n\n\t\tthis.x = Math.max( min.x, Math.min( max.x, this.x ) );\n\t\tthis.y = Math.max( min.y, Math.min( max.y, this.y ) );\n\n\t\treturn this;\n\n\t},\n\n\tclampScalar: function ( minVal, maxVal ) {\n\n\t\tthis.x = Math.max( minVal, Math.min( maxVal, this.x ) );\n\t\tthis.y = Math.max( minVal, Math.min( maxVal, this.y ) );\n\n\t\treturn this;\n\n\t},\n\n\tclampLength: function ( min, max ) {\n\n\t\tvar length = this.length();\n\n\t\treturn this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );\n\n\t},\n\n\tfloor: function () {\n\n\t\tthis.x = Math.floor( this.x );\n\t\tthis.y = Math.floor( this.y );\n\n\t\treturn this;\n\n\t},\n\n\tceil: function () {\n\n\t\tthis.x = Math.ceil( this.x );\n\t\tthis.y = Math.ceil( this.y );\n\n\t\treturn this;\n\n\t},\n\n\tround: function () {\n\n\t\tthis.x = Math.round( this.x );\n\t\tthis.y = Math.round( this.y );\n\n\t\treturn this;\n\n\t},\n\n\troundToZero: function () {\n\n\t\tthis.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );\n\t\tthis.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );\n\n\t\treturn this;\n\n\t},\n\n\tnegate: function () {\n\n\t\tthis.x = - this.x;\n\t\tthis.y = - this.y;\n\n\t\treturn this;\n\n\t},\n\n\tdot: function ( v ) {\n\n\t\treturn this.x * v.x + this.y * v.y;\n\n\t},\n\n\tcross: function ( v ) {\n\n\t\treturn this.x * v.y - this.y * v.x;\n\n\t},\n\n\tlengthSq: function () {\n\n\t\treturn this.x * this.x + this.y * this.y;\n\n\t},\n\n\tlength: function () {\n\n\t\treturn Math.sqrt( this.x * this.x + this.y * this.y );\n\n\t},\n\n\tmanhattanLength: function () {\n\n\t\treturn Math.abs( this.x ) + Math.abs( this.y );\n\n\t},\n\n\tnormalize: function () {\n\n\t\treturn this.divideScalar( this.length() || 1 );\n\n\t},\n\n\tangle: function () {\n\n\t\t// computes the angle in radians with respect to the positive x-axis\n\n\t\tvar angle = Math.atan2( this.y, this.x );\n\n\t\tif ( angle < 0 ) angle += 2 * Math.PI;\n\n\t\treturn angle;\n\n\t},\n\n\tdistanceTo: function ( v ) {\n\n\t\treturn Math.sqrt( this.distanceToSquared( v ) );\n\n\t},\n\n\tdistanceToSquared: function ( v ) {\n\n\t\tvar dx = this.x - v.x, dy = this.y - v.y;\n\t\treturn dx * dx + dy * dy;\n\n\t},\n\n\tmanhattanDistanceTo: function ( v ) {\n\n\t\treturn Math.abs( this.x - v.x ) + Math.abs( this.y - v.y );\n\n\t},\n\n\tsetLength: function ( length ) {\n\n\t\treturn this.normalize().multiplyScalar( length );\n\n\t},\n\n\tlerp: function ( v, alpha ) {\n\n\t\tthis.x += ( v.x - this.x ) * alpha;\n\t\tthis.y += ( v.y - this.y ) * alpha;\n\n\t\treturn this;\n\n\t},\n\n\tlerpVectors: function ( v1, v2, alpha ) {\n\n\t\treturn this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );\n\n\t},\n\n\tequals: function ( v ) {\n\n\t\treturn ( ( v.x === this.x ) && ( v.y === this.y ) );\n\n\t},\n\n\tfromArray: function ( array, offset ) {\n\n\t\tif ( offset === undefined ) offset = 0;\n\n\t\tthis.x = array[ offset ];\n\t\tthis.y = array[ offset + 1 ];\n\n\t\treturn this;\n\n\t},\n\n\ttoArray: function ( array, offset ) {\n\n\t\tif ( array === undefined ) array = [];\n\t\tif ( offset === undefined ) offset = 0;\n\n\t\tarray[ offset ] = this.x;\n\t\tarray[ offset + 1 ] = this.y;\n\n\t\treturn array;\n\n\t},\n\n\tfromBufferAttribute: function ( attribute, index, offset ) {\n\n\t\tif ( offset !== undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Vector2: offset has been removed from .fromBufferAttribute().' );\n\n\t\t}\n\n\t\tthis.x = attribute.getX( index );\n\t\tthis.y = attribute.getY( index );\n\n\t\treturn this;\n\n\t},\n\n\trotateAround: function ( center, angle ) {\n\n\t\tvar c = Math.cos( angle ), s = Math.sin( angle );\n\n\t\tvar x = this.x - center.x;\n\t\tvar y = this.y - center.y;\n\n\t\tthis.x = x * c - y * s + center.x;\n\t\tthis.y = x * s + y * c + center.y;\n\n\t\treturn this;\n\n\t}\n\n} );\n\n/**\n * @author mikael emtinger / http://gomo.se/\n * @author alteredq / http://alteredqualia.com/\n * @author WestLangley / http://github.com/WestLangley\n * @author bhouston / http://clara.io\n */\n\nfunction Quaternion( x, y, z, w ) {\n\n\tthis._x = x || 0;\n\tthis._y = y || 0;\n\tthis._z = z || 0;\n\tthis._w = ( w !== undefined ) ? w : 1;\n\n}\n\nObject.assign( Quaternion, {\n\n\tslerp: function ( qa, qb, qm, t ) {\n\n\t\treturn qm.copy( qa ).slerp( qb, t );\n\n\t},\n\n\tslerpFlat: function ( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) {\n\n\t\t// fuzz-free, array-based Quaternion SLERP operation\n\n\t\tvar x0 = src0[ srcOffset0 + 0 ],\n\t\t\ty0 = src0[ srcOffset0 + 1 ],\n\t\t\tz0 = src0[ srcOffset0 + 2 ],\n\t\t\tw0 = src0[ srcOffset0 + 3 ],\n\n\t\t\tx1 = src1[ srcOffset1 + 0 ],\n\t\t\ty1 = src1[ srcOffset1 + 1 ],\n\t\t\tz1 = src1[ srcOffset1 + 2 ],\n\t\t\tw1 = src1[ srcOffset1 + 3 ];\n\n\t\tif ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) {\n\n\t\t\tvar s = 1 - t,\n\n\t\t\t\tcos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1,\n\n\t\t\t\tdir = ( cos >= 0 ? 1 : - 1 ),\n\t\t\t\tsqrSin = 1 - cos * cos;\n\n\t\t\t// Skip the Slerp for tiny steps to avoid numeric problems:\n\t\t\tif ( sqrSin > Number.EPSILON ) {\n\n\t\t\t\tvar sin = Math.sqrt( sqrSin ),\n\t\t\t\t\tlen = Math.atan2( sin, cos * dir );\n\n\t\t\t\ts = Math.sin( s * len ) / sin;\n\t\t\t\tt = Math.sin( t * len ) / sin;\n\n\t\t\t}\n\n\t\t\tvar tDir = t * dir;\n\n\t\t\tx0 = x0 * s + x1 * tDir;\n\t\t\ty0 = y0 * s + y1 * tDir;\n\t\t\tz0 = z0 * s + z1 * tDir;\n\t\t\tw0 = w0 * s + w1 * tDir;\n\n\t\t\t// Normalize in case we just did a lerp:\n\t\t\tif ( s === 1 - t ) {\n\n\t\t\t\tvar f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 );\n\n\t\t\t\tx0 *= f;\n\t\t\t\ty0 *= f;\n\t\t\t\tz0 *= f;\n\t\t\t\tw0 *= f;\n\n\t\t\t}\n\n\t\t}\n\n\t\tdst[ dstOffset ] = x0;\n\t\tdst[ dstOffset + 1 ] = y0;\n\t\tdst[ dstOffset + 2 ] = z0;\n\t\tdst[ dstOffset + 3 ] = w0;\n\n\t}\n\n} );\n\nObject.defineProperties( Quaternion.prototype, {\n\n\tx: {\n\n\t\tget: function () {\n\n\t\t\treturn this._x;\n\n\t\t},\n\n\t\tset: function ( value ) {\n\n\t\t\tthis._x = value;\n\t\t\tthis.onChangeCallback();\n\n\t\t}\n\n\t},\n\n\ty: {\n\n\t\tget: function () {\n\n\t\t\treturn this._y;\n\n\t\t},\n\n\t\tset: function ( value ) {\n\n\t\t\tthis._y = value;\n\t\t\tthis.onChangeCallback();\n\n\t\t}\n\n\t},\n\n\tz: {\n\n\t\tget: function () {\n\n\t\t\treturn this._z;\n\n\t\t},\n\n\t\tset: function ( value ) {\n\n\t\t\tthis._z = value;\n\t\t\tthis.onChangeCallback();\n\n\t\t}\n\n\t},\n\n\tw: {\n\n\t\tget: function () {\n\n\t\t\treturn this._w;\n\n\t\t},\n\n\t\tset: function ( value ) {\n\n\t\t\tthis._w = value;\n\t\t\tthis.onChangeCallback();\n\n\t\t}\n\n\t}\n\n} );\n\nObject.assign( Quaternion.prototype, {\n\n\tisQuaternion: true,\n\n\tset: function ( x, y, z, w ) {\n\n\t\tthis._x = x;\n\t\tthis._y = y;\n\t\tthis._z = z;\n\t\tthis._w = w;\n\n\t\tthis.onChangeCallback();\n\n\t\treturn this;\n\n\t},\n\n\tclone: function () {\n\n\t\treturn new this.constructor( this._x, this._y, this._z, this._w );\n\n\t},\n\n\tcopy: function ( quaternion ) {\n\n\t\tthis._x = quaternion.x;\n\t\tthis._y = quaternion.y;\n\t\tthis._z = quaternion.z;\n\t\tthis._w = quaternion.w;\n\n\t\tthis.onChangeCallback();\n\n\t\treturn this;\n\n\t},\n\n\tsetFromEuler: function ( euler, update ) {\n\n\t\tif ( ! ( euler && euler.isEuler ) ) {\n\n\t\t\tthrow new Error( 'THREE.Quaternion: .setFromEuler() now expects an Euler rotation rather than a Vector3 and order.' );\n\n\t\t}\n\n\t\tvar x = euler._x, y = euler._y, z = euler._z, order = euler.order;\n\n\t\t// http://www.mathworks.com/matlabcentral/fileexchange/\n\t\t// \t20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/\n\t\t//\tcontent/SpinCalc.m\n\n\t\tvar cos = Math.cos;\n\t\tvar sin = Math.sin;\n\n\t\tvar c1 = cos( x / 2 );\n\t\tvar c2 = cos( y / 2 );\n\t\tvar c3 = cos( z / 2 );\n\n\t\tvar s1 = sin( x / 2 );\n\t\tvar s2 = sin( y / 2 );\n\t\tvar s3 = sin( z / 2 );\n\n\t\tif ( order === 'XYZ' ) {\n\n\t\t\tthis._x = s1 * c2 * c3 + c1 * s2 * s3;\n\t\t\tthis._y = c1 * s2 * c3 - s1 * c2 * s3;\n\t\t\tthis._z = c1 * c2 * s3 + s1 * s2 * c3;\n\t\t\tthis._w = c1 * c2 * c3 - s1 * s2 * s3;\n\n\t\t} else if ( order === 'YXZ' ) {\n\n\t\t\tthis._x = s1 * c2 * c3 + c1 * s2 * s3;\n\t\t\tthis._y = c1 * s2 * c3 - s1 * c2 * s3;\n\t\t\tthis._z = c1 * c2 * s3 - s1 * s2 * c3;\n\t\t\tthis._w = c1 * c2 * c3 + s1 * s2 * s3;\n\n\t\t} else if ( order === 'ZXY' ) {\n\n\t\t\tthis._x = s1 * c2 * c3 - c1 * s2 * s3;\n\t\t\tthis._y = c1 * s2 * c3 + s1 * c2 * s3;\n\t\t\tthis._z = c1 * c2 * s3 + s1 * s2 * c3;\n\t\t\tthis._w = c1 * c2 * c3 - s1 * s2 * s3;\n\n\t\t} else if ( order === 'ZYX' ) {\n\n\t\t\tthis._x = s1 * c2 * c3 - c1 * s2 * s3;\n\t\t\tthis._y = c1 * s2 * c3 + s1 * c2 * s3;\n\t\t\tthis._z = c1 * c2 * s3 - s1 * s2 * c3;\n\t\t\tthis._w = c1 * c2 * c3 + s1 * s2 * s3;\n\n\t\t} else if ( order === 'YZX' ) {\n\n\t\t\tthis._x = s1 * c2 * c3 + c1 * s2 * s3;\n\t\t\tthis._y = c1 * s2 * c3 + s1 * c2 * s3;\n\t\t\tthis._z = c1 * c2 * s3 - s1 * s2 * c3;\n\t\t\tthis._w = c1 * c2 * c3 - s1 * s2 * s3;\n\n\t\t} else if ( order === 'XZY' ) {\n\n\t\t\tthis._x = s1 * c2 * c3 - c1 * s2 * s3;\n\t\t\tthis._y = c1 * s2 * c3 - s1 * c2 * s3;\n\t\t\tthis._z = c1 * c2 * s3 + s1 * s2 * c3;\n\t\t\tthis._w = c1 * c2 * c3 + s1 * s2 * s3;\n\n\t\t}\n\n\t\tif ( update !== false ) this.onChangeCallback();\n\n\t\treturn this;\n\n\t},\n\n\tsetFromAxisAngle: function ( axis, angle ) {\n\n\t\t// http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm\n\n\t\t// assumes axis is normalized\n\n\t\tvar halfAngle = angle / 2, s = Math.sin( halfAngle );\n\n\t\tthis._x = axis.x * s;\n\t\tthis._y = axis.y * s;\n\t\tthis._z = axis.z * s;\n\t\tthis._w = Math.cos( halfAngle );\n\n\t\tthis.onChangeCallback();\n\n\t\treturn this;\n\n\t},\n\n\tsetFromRotationMatrix: function ( m ) {\n\n\t\t// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm\n\n\t\t// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)\n\n\t\tvar te = m.elements,\n\n\t\t\tm11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],\n\t\t\tm21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],\n\t\t\tm31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ],\n\n\t\t\ttrace = m11 + m22 + m33,\n\t\t\ts;\n\n\t\tif ( trace > 0 ) {\n\n\t\t\ts = 0.5 / Math.sqrt( trace + 1.0 );\n\n\t\t\tthis._w = 0.25 / s;\n\t\t\tthis._x = ( m32 - m23 ) * s;\n\t\t\tthis._y = ( m13 - m31 ) * s;\n\t\t\tthis._z = ( m21 - m12 ) * s;\n\n\t\t} else if ( m11 > m22 && m11 > m33 ) {\n\n\t\t\ts = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 );\n\n\t\t\tthis._w = ( m32 - m23 ) / s;\n\t\t\tthis._x = 0.25 * s;\n\t\t\tthis._y = ( m12 + m21 ) / s;\n\t\t\tthis._z = ( m13 + m31 ) / s;\n\n\t\t} else if ( m22 > m33 ) {\n\n\t\t\ts = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 );\n\n\t\t\tthis._w = ( m13 - m31 ) / s;\n\t\t\tthis._x = ( m12 + m21 ) / s;\n\t\t\tthis._y = 0.25 * s;\n\t\t\tthis._z = ( m23 + m32 ) / s;\n\n\t\t} else {\n\n\t\t\ts = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 );\n\n\t\t\tthis._w = ( m21 - m12 ) / s;\n\t\t\tthis._x = ( m13 + m31 ) / s;\n\t\t\tthis._y = ( m23 + m32 ) / s;\n\t\t\tthis._z = 0.25 * s;\n\n\t\t}\n\n\t\tthis.onChangeCallback();\n\n\t\treturn this;\n\n\t},\n\n\tsetFromUnitVectors: function ( vFrom, vTo ) {\n\n\t\t// assumes direction vectors vFrom and vTo are normalized\n\n\t\tvar EPS = 0.000001;\n\n\t\tvar r = vFrom.dot( vTo ) + 1;\n\n\t\tif ( r < EPS ) {\n\n\t\t\tr = 0;\n\n\t\t\tif ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) {\n\n\t\t\t\tthis._x = - vFrom.y;\n\t\t\t\tthis._y = vFrom.x;\n\t\t\t\tthis._z = 0;\n\t\t\t\tthis._w = r;\n\n\t\t\t} else {\n\n\t\t\t\tthis._x = 0;\n\t\t\t\tthis._y = - vFrom.z;\n\t\t\t\tthis._z = vFrom.y;\n\t\t\t\tthis._w = r;\n\n\t\t\t}\n\n\t\t} else {\n\n\t\t\t// crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3\n\n\t\t\tthis._x = vFrom.y * vTo.z - vFrom.z * vTo.y;\n\t\t\tthis._y = vFrom.z * vTo.x - vFrom.x * vTo.z;\n\t\t\tthis._z = vFrom.x * vTo.y - vFrom.y * vTo.x;\n\t\t\tthis._w = r;\n\n\t\t}\n\n\t\treturn this.normalize();\n\n\t},\n\n\tangleTo: function ( q ) {\n\n\t\treturn 2 * Math.acos( Math.abs( _Math.clamp( this.dot( q ), - 1, 1 ) ) );\n\n\t},\n\n\trotateTowards: function ( q, step ) {\n\n\t\tvar angle = this.angleTo( q );\n\n\t\tif ( angle === 0 ) return this;\n\n\t\tvar t = Math.min( 1, step / angle );\n\n\t\tthis.slerp( q, t );\n\n\t\treturn this;\n\n\t},\n\n\tinverse: function () {\n\n\t\t// quaternion is assumed to have unit length\n\n\t\treturn this.conjugate();\n\n\t},\n\n\tconjugate: function () {\n\n\t\tthis._x *= - 1;\n\t\tthis._y *= - 1;\n\t\tthis._z *= - 1;\n\n\t\tthis.onChangeCallback();\n\n\t\treturn this;\n\n\t},\n\n\tdot: function ( v ) {\n\n\t\treturn this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w;\n\n\t},\n\n\tlengthSq: function () {\n\n\t\treturn this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w;\n\n\t},\n\n\tlength: function () {\n\n\t\treturn Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w );\n\n\t},\n\n\tnormalize: function () {\n\n\t\tvar l = this.length();\n\n\t\tif ( l === 0 ) {\n\n\t\t\tthis._x = 0;\n\t\t\tthis._y = 0;\n\t\t\tthis._z = 0;\n\t\t\tthis._w = 1;\n\n\t\t} else {\n\n\t\t\tl = 1 / l;\n\n\t\t\tthis._x = this._x * l;\n\t\t\tthis._y = this._y * l;\n\t\t\tthis._z = this._z * l;\n\t\t\tthis._w = this._w * l;\n\n\t\t}\n\n\t\tthis.onChangeCallback();\n\n\t\treturn this;\n\n\t},\n\n\tmultiply: function ( q, p ) {\n\n\t\tif ( p !== undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Quaternion: .multiply() now only accepts one argument. Use .multiplyQuaternions( a, b ) instead.' );\n\t\t\treturn this.multiplyQuaternions( q, p );\n\n\t\t}\n\n\t\treturn this.multiplyQuaternions( this, q );\n\n\t},\n\n\tpremultiply: function ( q ) {\n\n\t\treturn this.multiplyQuaternions( q, this );\n\n\t},\n\n\tmultiplyQuaternions: function ( a, b ) {\n\n\t\t// from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm\n\n\t\tvar qax = a._x, qay = a._y, qaz = a._z, qaw = a._w;\n\t\tvar qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w;\n\n\t\tthis._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby;\n\t\tthis._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz;\n\t\tthis._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx;\n\t\tthis._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz;\n\n\t\tthis.onChangeCallback();\n\n\t\treturn this;\n\n\t},\n\n\tslerp: function ( qb, t ) {\n\n\t\tif ( t === 0 ) return this;\n\t\tif ( t === 1 ) return this.copy( qb );\n\n\t\tvar x = this._x, y = this._y, z = this._z, w = this._w;\n\n\t\t// http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/\n\n\t\tvar cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z;\n\n\t\tif ( cosHalfTheta < 0 ) {\n\n\t\t\tthis._w = - qb._w;\n\t\t\tthis._x = - qb._x;\n\t\t\tthis._y = - qb._y;\n\t\t\tthis._z = - qb._z;\n\n\t\t\tcosHalfTheta = - cosHalfTheta;\n\n\t\t} else {\n\n\t\t\tthis.copy( qb );\n\n\t\t}\n\n\t\tif ( cosHalfTheta >= 1.0 ) {\n\n\t\t\tthis._w = w;\n\t\t\tthis._x = x;\n\t\t\tthis._y = y;\n\t\t\tthis._z = z;\n\n\t\t\treturn this;\n\n\t\t}\n\n\t\tvar sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta;\n\n\t\tif ( sqrSinHalfTheta <= Number.EPSILON ) {\n\n\t\t\tvar s = 1 - t;\n\t\t\tthis._w = s * w + t * this._w;\n\t\t\tthis._x = s * x + t * this._x;\n\t\t\tthis._y = s * y + t * this._y;\n\t\t\tthis._z = s * z + t * this._z;\n\n\t\t\treturn this.normalize();\n\n\t\t}\n\n\t\tvar sinHalfTheta = Math.sqrt( sqrSinHalfTheta );\n\t\tvar halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta );\n\t\tvar ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta,\n\t\t\tratioB = Math.sin( t * halfTheta ) / sinHalfTheta;\n\n\t\tthis._w = ( w * ratioA + this._w * ratioB );\n\t\tthis._x = ( x * ratioA + this._x * ratioB );\n\t\tthis._y = ( y * ratioA + this._y * ratioB );\n\t\tthis._z = ( z * ratioA + this._z * ratioB );\n\n\t\tthis.onChangeCallback();\n\n\t\treturn this;\n\n\t},\n\n\tequals: function ( quaternion ) {\n\n\t\treturn ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w );\n\n\t},\n\n\tfromArray: function ( array, offset ) {\n\n\t\tif ( offset === undefined ) offset = 0;\n\n\t\tthis._x = array[ offset ];\n\t\tthis._y = array[ offset + 1 ];\n\t\tthis._z = array[ offset + 2 ];\n\t\tthis._w = array[ offset + 3 ];\n\n\t\tthis.onChangeCallback();\n\n\t\treturn this;\n\n\t},\n\n\ttoArray: function ( array, offset ) {\n\n\t\tif ( array === undefined ) array = [];\n\t\tif ( offset === undefined ) offset = 0;\n\n\t\tarray[ offset ] = this._x;\n\t\tarray[ offset + 1 ] = this._y;\n\t\tarray[ offset + 2 ] = this._z;\n\t\tarray[ offset + 3 ] = this._w;\n\n\t\treturn array;\n\n\t},\n\n\tonChange: function ( callback ) {\n\n\t\tthis.onChangeCallback = callback;\n\n\t\treturn this;\n\n\t},\n\n\tonChangeCallback: function () {}\n\n} );\n\n/**\n * @author mrdoob / http://mrdoob.com/\n * @author kile / http://kile.stravaganza.org/\n * @author philogb / http://blog.thejit.org/\n * @author mikael emtinger / http://gomo.se/\n * @author egraether / http://egraether.com/\n * @author WestLangley / http://github.com/WestLangley\n */\n\nfunction Vector3( x, y, z ) {\n\n\tthis.x = x || 0;\n\tthis.y = y || 0;\n\tthis.z = z || 0;\n\n}\n\nObject.assign( Vector3.prototype, {\n\n\tisVector3: true,\n\n\tset: function ( x, y, z ) {\n\n\t\tthis.x = x;\n\t\tthis.y = y;\n\t\tthis.z = z;\n\n\t\treturn this;\n\n\t},\n\n\tsetScalar: function ( scalar ) {\n\n\t\tthis.x = scalar;\n\t\tthis.y = scalar;\n\t\tthis.z = scalar;\n\n\t\treturn this;\n\n\t},\n\n\tsetX: function ( x ) {\n\n\t\tthis.x = x;\n\n\t\treturn this;\n\n\t},\n\n\tsetY: function ( y ) {\n\n\t\tthis.y = y;\n\n\t\treturn this;\n\n\t},\n\n\tsetZ: function ( z ) {\n\n\t\tthis.z = z;\n\n\t\treturn this;\n\n\t},\n\n\tsetComponent: function ( index, value ) {\n\n\t\tswitch ( index ) {\n\n\t\t\tcase 0: this.x = value; break;\n\t\t\tcase 1: this.y = value; break;\n\t\t\tcase 2: this.z = value; break;\n\t\t\tdefault: throw new Error( 'index is out of range: ' + index );\n\n\t\t}\n\n\t\treturn this;\n\n\t},\n\n\tgetComponent: function ( index ) {\n\n\t\tswitch ( index ) {\n\n\t\t\tcase 0: return this.x;\n\t\t\tcase 1: return this.y;\n\t\t\tcase 2: return this.z;\n\t\t\tdefault: throw new Error( 'index is out of range: ' + index );\n\n\t\t}\n\n\t},\n\n\tclone: function () {\n\n\t\treturn new this.constructor( this.x, this.y, this.z );\n\n\t},\n\n\tcopy: function ( v ) {\n\n\t\tthis.x = v.x;\n\t\tthis.y = v.y;\n\t\tthis.z = v.z;\n\n\t\treturn this;\n\n\t},\n\n\tadd: function ( v, w ) {\n\n\t\tif ( w !== undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Vector3: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );\n\t\t\treturn this.addVectors( v, w );\n\n\t\t}\n\n\t\tthis.x += v.x;\n\t\tthis.y += v.y;\n\t\tthis.z += v.z;\n\n\t\treturn this;\n\n\t},\n\n\taddScalar: function ( s ) {\n\n\t\tthis.x += s;\n\t\tthis.y += s;\n\t\tthis.z += s;\n\n\t\treturn this;\n\n\t},\n\n\taddVectors: function ( a, b ) {\n\n\t\tthis.x = a.x + b.x;\n\t\tthis.y = a.y + b.y;\n\t\tthis.z = a.z + b.z;\n\n\t\treturn this;\n\n\t},\n\n\taddScaledVector: function ( v, s ) {\n\n\t\tthis.x += v.x * s;\n\t\tthis.y += v.y * s;\n\t\tthis.z += v.z * s;\n\n\t\treturn this;\n\n\t},\n\n\tsub: function ( v, w ) {\n\n\t\tif ( w !== undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Vector3: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );\n\t\t\treturn this.subVectors( v, w );\n\n\t\t}\n\n\t\tthis.x -= v.x;\n\t\tthis.y -= v.y;\n\t\tthis.z -= v.z;\n\n\t\treturn this;\n\n\t},\n\n\tsubScalar: function ( s ) {\n\n\t\tthis.x -= s;\n\t\tthis.y -= s;\n\t\tthis.z -= s;\n\n\t\treturn this;\n\n\t},\n\n\tsubVectors: function ( a, b ) {\n\n\t\tthis.x = a.x - b.x;\n\t\tthis.y = a.y - b.y;\n\t\tthis.z = a.z - b.z;\n\n\t\treturn this;\n\n\t},\n\n\tmultiply: function ( v, w ) {\n\n\t\tif ( w !== undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Vector3: .multiply() now only accepts one argument. Use .multiplyVectors( a, b ) instead.' );\n\t\t\treturn this.multiplyVectors( v, w );\n\n\t\t}\n\n\t\tthis.x *= v.x;\n\t\tthis.y *= v.y;\n\t\tthis.z *= v.z;\n\n\t\treturn this;\n\n\t},\n\n\tmultiplyScalar: function ( scalar ) {\n\n\t\tthis.x *= scalar;\n\t\tthis.y *= scalar;\n\t\tthis.z *= scalar;\n\n\t\treturn this;\n\n\t},\n\n\tmultiplyVectors: function ( a, b ) {\n\n\t\tthis.x = a.x * b.x;\n\t\tthis.y = a.y * b.y;\n\t\tthis.z = a.z * b.z;\n\n\t\treturn this;\n\n\t},\n\n\tapplyEuler: function () {\n\n\t\tvar quaternion = new Quaternion();\n\n\t\treturn function applyEuler( euler ) {\n\n\t\t\tif ( ! ( euler && euler.isEuler ) ) {\n\n\t\t\t\tconsole.error( 'THREE.Vector3: .applyEuler() now expects an Euler rotation rather than a Vector3 and order.' );\n\n\t\t\t}\n\n\t\t\treturn this.applyQuaternion( quaternion.setFromEuler( euler ) );\n\n\t\t};\n\n\t}(),\n\n\tapplyAxisAngle: function () {\n\n\t\tvar quaternion = new Quaternion();\n\n\t\treturn function applyAxisAngle( axis, angle ) {\n\n\t\t\treturn this.applyQuaternion( quaternion.setFromAxisAngle( axis, angle ) );\n\n\t\t};\n\n\t}(),\n\n\tapplyMatrix3: function ( m ) {\n\n\t\tvar x = this.x, y = this.y, z = this.z;\n\t\tvar e = m.elements;\n\n\t\tthis.x = e[ 0 ] * x + e[ 3 ] * y + e[ 6 ] * z;\n\t\tthis.y = e[ 1 ] * x + e[ 4 ] * y + e[ 7 ] * z;\n\t\tthis.z = e[ 2 ] * x + e[ 5 ] * y + e[ 8 ] * z;\n\n\t\treturn this;\n\n\t},\n\n\tapplyMatrix4: function ( m ) {\n\n\t\tvar x = this.x, y = this.y, z = this.z;\n\t\tvar e = m.elements;\n\n\t\tvar w = 1 / ( e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] );\n\n\t\tthis.x = ( e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] ) * w;\n\t\tthis.y = ( e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] ) * w;\n\t\tthis.z = ( e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] ) * w;\n\n\t\treturn this;\n\n\t},\n\n\tapplyQuaternion: function ( q ) {\n\n\t\tvar x = this.x, y = this.y, z = this.z;\n\t\tvar qx = q.x, qy = q.y, qz = q.z, qw = q.w;\n\n\t\t// calculate quat * vector\n\n\t\tvar ix = qw * x + qy * z - qz * y;\n\t\tvar iy = qw * y + qz * x - qx * z;\n\t\tvar iz = qw * z + qx * y - qy * x;\n\t\tvar iw = - qx * x - qy * y - qz * z;\n\n\t\t// calculate result * inverse quat\n\n\t\tthis.x = ix * qw + iw * - qx + iy * - qz - iz * - qy;\n\t\tthis.y = iy * qw + iw * - qy + iz * - qx - ix * - qz;\n\t\tthis.z = iz * qw + iw * - qz + ix * - qy - iy * - qx;\n\n\t\treturn this;\n\n\t},\n\n\tproject: function ( camera ) {\n\n\t\treturn this.applyMatrix4( camera.matrixWorldInverse ).applyMatrix4( camera.projectionMatrix );\n\n\t},\n\n\tunproject: function ( camera ) {\n\n\t\treturn this.applyMatrix4( camera.projectionMatrixInverse ).applyMatrix4( camera.matrixWorld );\n\n\t},\n\n\ttransformDirection: function ( m ) {\n\n\t\t// input: THREE.Matrix4 affine matrix\n\t\t// vector interpreted as a direction\n\n\t\tvar x = this.x, y = this.y, z = this.z;\n\t\tvar e = m.elements;\n\n\t\tthis.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;\n\t\tthis.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;\n\t\tthis.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;\n\n\t\treturn this.normalize();\n\n\t},\n\n\tdivide: function ( v ) {\n\n\t\tthis.x /= v.x;\n\t\tthis.y /= v.y;\n\t\tthis.z /= v.z;\n\n\t\treturn this;\n\n\t},\n\n\tdivideScalar: function ( scalar ) {\n\n\t\treturn this.multiplyScalar( 1 / scalar );\n\n\t},\n\n\tmin: function ( v ) {\n\n\t\tthis.x = Math.min( this.x, v.x );\n\t\tthis.y = Math.min( this.y, v.y );\n\t\tthis.z = Math.min( this.z, v.z );\n\n\t\treturn this;\n\n\t},\n\n\tmax: function ( v ) {\n\n\t\tthis.x = Math.max( this.x, v.x );\n\t\tthis.y = Math.max( this.y, v.y );\n\t\tthis.z = Math.max( this.z, v.z );\n\n\t\treturn this;\n\n\t},\n\n\tclamp: function ( min, max ) {\n\n\t\t// assumes min < max, componentwise\n\n\t\tthis.x = Math.max( min.x, Math.min( max.x, this.x ) );\n\t\tthis.y = Math.max( min.y, Math.min( max.y, this.y ) );\n\t\tthis.z = Math.max( min.z, Math.min( max.z, this.z ) );\n\n\t\treturn this;\n\n\t},\n\n\tclampScalar: function ( minVal, maxVal ) {\n\n\t\tthis.x = Math.max( minVal, Math.min( maxVal, this.x ) );\n\t\tthis.y = Math.max( minVal, Math.min( maxVal, this.y ) );\n\t\tthis.z = Math.max( minVal, Math.min( maxVal, this.z ) );\n\n\t\treturn this;\n\n\t},\n\n\tclampLength: function ( min, max ) {\n\n\t\tvar length = this.length();\n\n\t\treturn this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );\n\n\t},\n\n\tfloor: function () {\n\n\t\tthis.x = Math.floor( this.x );\n\t\tthis.y = Math.floor( this.y );\n\t\tthis.z = Math.floor( this.z );\n\n\t\treturn this;\n\n\t},\n\n\tceil: function () {\n\n\t\tthis.x = Math.ceil( this.x );\n\t\tthis.y = Math.ceil( this.y );\n\t\tthis.z = Math.ceil( this.z );\n\n\t\treturn this;\n\n\t},\n\n\tround: function () {\n\n\t\tthis.x = Math.round( this.x );\n\t\tthis.y = Math.round( this.y );\n\t\tthis.z = Math.round( this.z );\n\n\t\treturn this;\n\n\t},\n\n\troundToZero: function () {\n\n\t\tthis.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );\n\t\tthis.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );\n\t\tthis.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );\n\n\t\treturn this;\n\n\t},\n\n\tnegate: function () {\n\n\t\tthis.x = - this.x;\n\t\tthis.y = - this.y;\n\t\tthis.z = - this.z;\n\n\t\treturn this;\n\n\t},\n\n\tdot: function ( v ) {\n\n\t\treturn this.x * v.x + this.y * v.y + this.z * v.z;\n\n\t},\n\n\t// TODO lengthSquared?\n\n\tlengthSq: function () {\n\n\t\treturn this.x * this.x + this.y * this.y + this.z * this.z;\n\n\t},\n\n\tlength: function () {\n\n\t\treturn Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z );\n\n\t},\n\n\tmanhattanLength: function () {\n\n\t\treturn Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z );\n\n\t},\n\n\tnormalize: function () {\n\n\t\treturn this.divideScalar( this.length() || 1 );\n\n\t},\n\n\tsetLength: function ( length ) {\n\n\t\treturn this.normalize().multiplyScalar( length );\n\n\t},\n\n\tlerp: function ( v, alpha ) {\n\n\t\tthis.x += ( v.x - this.x ) * alpha;\n\t\tthis.y += ( v.y - this.y ) * alpha;\n\t\tthis.z += ( v.z - this.z ) * alpha;\n\n\t\treturn this;\n\n\t},\n\n\tlerpVectors: function ( v1, v2, alpha ) {\n\n\t\treturn this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );\n\n\t},\n\n\tcross: function ( v, w ) {\n\n\t\tif ( w !== undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Vector3: .cross() now only accepts one argument. Use .crossVectors( a, b ) instead.' );\n\t\t\treturn this.crossVectors( v, w );\n\n\t\t}\n\n\t\treturn this.crossVectors( this, v );\n\n\t},\n\n\tcrossVectors: function ( a, b ) {\n\n\t\tvar ax = a.x, ay = a.y, az = a.z;\n\t\tvar bx = b.x, by = b.y, bz = b.z;\n\n\t\tthis.x = ay * bz - az * by;\n\t\tthis.y = az * bx - ax * bz;\n\t\tthis.z = ax * by - ay * bx;\n\n\t\treturn this;\n\n\t},\n\n\tprojectOnVector: function ( vector ) {\n\n\t\tvar scalar = vector.dot( this ) / vector.lengthSq();\n\n\t\treturn this.copy( vector ).multiplyScalar( scalar );\n\n\t},\n\n\tprojectOnPlane: function () {\n\n\t\tvar v1 = new Vector3();\n\n\t\treturn function projectOnPlane( planeNormal ) {\n\n\t\t\tv1.copy( this ).projectOnVector( planeNormal );\n\n\t\t\treturn this.sub( v1 );\n\n\t\t};\n\n\t}(),\n\n\treflect: function () {\n\n\t\t// reflect incident vector off plane orthogonal to normal\n\t\t// normal is assumed to have unit length\n\n\t\tvar v1 = new Vector3();\n\n\t\treturn function reflect( normal ) {\n\n\t\t\treturn this.sub( v1.copy( normal ).multiplyScalar( 2 * this.dot( normal ) ) );\n\n\t\t};\n\n\t}(),\n\n\tangleTo: function ( v ) {\n\n\t\tvar theta = this.dot( v ) / ( Math.sqrt( this.lengthSq() * v.lengthSq() ) );\n\n\t\t// clamp, to handle numerical problems\n\n\t\treturn Math.acos( _Math.clamp( theta, - 1, 1 ) );\n\n\t},\n\n\tdistanceTo: function ( v ) {\n\n\t\treturn Math.sqrt( this.distanceToSquared( v ) );\n\n\t},\n\n\tdistanceToSquared: function ( v ) {\n\n\t\tvar dx = this.x - v.x, dy = this.y - v.y, dz = this.z - v.z;\n\n\t\treturn dx * dx + dy * dy + dz * dz;\n\n\t},\n\n\tmanhattanDistanceTo: function ( v ) {\n\n\t\treturn Math.abs( this.x - v.x ) + Math.abs( this.y - v.y ) + Math.abs( this.z - v.z );\n\n\t},\n\n\tsetFromSpherical: function ( s ) {\n\n\t\treturn this.setFromSphericalCoords( s.radius, s.phi, s.theta );\n\n\t},\n\n\tsetFromSphericalCoords: function ( radius, phi, theta ) {\n\n\t\tvar sinPhiRadius = Math.sin( phi ) * radius;\n\n\t\tthis.x = sinPhiRadius * Math.sin( theta );\n\t\tthis.y = Math.cos( phi ) * radius;\n\t\tthis.z = sinPhiRadius * Math.cos( theta );\n\n\t\treturn this;\n\n\t},\n\n\tsetFromCylindrical: function ( c ) {\n\n\t\treturn this.setFromCylindricalCoords( c.radius, c.theta, c.y );\n\n\t},\n\n\tsetFromCylindricalCoords: function ( radius, theta, y ) {\n\n\t\tthis.x = radius * Math.sin( theta );\n\t\tthis.y = y;\n\t\tthis.z = radius * Math.cos( theta );\n\n\t\treturn this;\n\n\t},\n\n\tsetFromMatrixPosition: function ( m ) {\n\n\t\tvar e = m.elements;\n\n\t\tthis.x = e[ 12 ];\n\t\tthis.y = e[ 13 ];\n\t\tthis.z = e[ 14 ];\n\n\t\treturn this;\n\n\t},\n\n\tsetFromMatrixScale: function ( m ) {\n\n\t\tvar sx = this.setFromMatrixColumn( m, 0 ).length();\n\t\tvar sy = this.setFromMatrixColumn( m, 1 ).length();\n\t\tvar sz = this.setFromMatrixColumn( m, 2 ).length();\n\n\t\tthis.x = sx;\n\t\tthis.y = sy;\n\t\tthis.z = sz;\n\n\t\treturn this;\n\n\t},\n\n\tsetFromMatrixColumn: function ( m, index ) {\n\n\t\treturn this.fromArray( m.elements, index * 4 );\n\n\t},\n\n\tequals: function ( v ) {\n\n\t\treturn ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) );\n\n\t},\n\n\tfromArray: function ( array, offset ) {\n\n\t\tif ( offset === undefined ) offset = 0;\n\n\t\tthis.x = array[ offset ];\n\t\tthis.y = array[ offset + 1 ];\n\t\tthis.z = array[ offset + 2 ];\n\n\t\treturn this;\n\n\t},\n\n\ttoArray: function ( array, offset ) {\n\n\t\tif ( array === undefined ) array = [];\n\t\tif ( offset === undefined ) offset = 0;\n\n\t\tarray[ offset ] = this.x;\n\t\tarray[ offset + 1 ] = this.y;\n\t\tarray[ offset + 2 ] = this.z;\n\n\t\treturn array;\n\n\t},\n\n\tfromBufferAttribute: function ( attribute, index, offset ) {\n\n\t\tif ( offset !== undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Vector3: offset has been removed from .fromBufferAttribute().' );\n\n\t\t}\n\n\t\tthis.x = attribute.getX( index );\n\t\tthis.y = attribute.getY( index );\n\t\tthis.z = attribute.getZ( index );\n\n\t\treturn this;\n\n\t}\n\n} );\n\n/**\n * @author alteredq / http://alteredqualia.com/\n * @author WestLangley / http://github.com/WestLangley\n * @author bhouston / http://clara.io\n * @author tschw\n */\n\nfunction Matrix3() {\n\n\tthis.elements = [\n\n\t\t1, 0, 0,\n\t\t0, 1, 0,\n\t\t0, 0, 1\n\n\t];\n\n\tif ( arguments.length > 0 ) {\n\n\t\tconsole.error( 'THREE.Matrix3: the constructor no longer reads arguments. use .set() instead.' );\n\n\t}\n\n}\n\nObject.assign( Matrix3.prototype, {\n\n\tisMatrix3: true,\n\n\tset: function ( n11, n12, n13, n21, n22, n23, n31, n32, n33 ) {\n\n\t\tvar te = this.elements;\n\n\t\tte[ 0 ] = n11; te[ 1 ] = n21; te[ 2 ] = n31;\n\t\tte[ 3 ] = n12; te[ 4 ] = n22; te[ 5 ] = n32;\n\t\tte[ 6 ] = n13; te[ 7 ] = n23; te[ 8 ] = n33;\n\n\t\treturn this;\n\n\t},\n\n\tidentity: function () {\n\n\t\tthis.set(\n\n\t\t\t1, 0, 0,\n\t\t\t0, 1, 0,\n\t\t\t0, 0, 1\n\n\t\t);\n\n\t\treturn this;\n\n\t},\n\n\tclone: function () {\n\n\t\treturn new this.constructor().fromArray( this.elements );\n\n\t},\n\n\tcopy: function ( m ) {\n\n\t\tvar te = this.elements;\n\t\tvar me = m.elements;\n\n\t\tte[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ];\n\t\tte[ 3 ] = me[ 3 ]; te[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ];\n\t\tte[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ]; te[ 8 ] = me[ 8 ];\n\n\t\treturn this;\n\n\t},\n\n\tsetFromMatrix4: function ( m ) {\n\n\t\tvar me = m.elements;\n\n\t\tthis.set(\n\n\t\t\tme[ 0 ], me[ 4 ], me[ 8 ],\n\t\t\tme[ 1 ], me[ 5 ], me[ 9 ],\n\t\t\tme[ 2 ], me[ 6 ], me[ 10 ]\n\n\t\t);\n\n\t\treturn this;\n\n\t},\n\n\tapplyToBufferAttribute: function () {\n\n\t\tvar v1 = new Vector3();\n\n\t\treturn function applyToBufferAttribute( attribute ) {\n\n\t\t\tfor ( var i = 0, l = attribute.count; i < l; i ++ ) {\n\n\t\t\t\tv1.x = attribute.getX( i );\n\t\t\t\tv1.y = attribute.getY( i );\n\t\t\t\tv1.z = attribute.getZ( i );\n\n\t\t\t\tv1.applyMatrix3( this );\n\n\t\t\t\tattribute.setXYZ( i, v1.x, v1.y, v1.z );\n\n\t\t\t}\n\n\t\t\treturn attribute;\n\n\t\t};\n\n\t}(),\n\n\tmultiply: function ( m ) {\n\n\t\treturn this.multiplyMatrices( this, m );\n\n\t},\n\n\tpremultiply: function ( m ) {\n\n\t\treturn this.multiplyMatrices( m, this );\n\n\t},\n\n\tmultiplyMatrices: function ( a, b ) {\n\n\t\tvar ae = a.elements;\n\t\tvar be = b.elements;\n\t\tvar te = this.elements;\n\n\t\tvar a11 = ae[ 0 ], a12 = ae[ 3 ], a13 = ae[ 6 ];\n\t\tvar a21 = ae[ 1 ], a22 = ae[ 4 ], a23 = ae[ 7 ];\n\t\tvar a31 = ae[ 2 ], a32 = ae[ 5 ], a33 = ae[ 8 ];\n\n\t\tvar b11 = be[ 0 ], b12 = be[ 3 ], b13 = be[ 6 ];\n\t\tvar b21 = be[ 1 ], b22 = be[ 4 ], b23 = be[ 7 ];\n\t\tvar b31 = be[ 2 ], b32 = be[ 5 ], b33 = be[ 8 ];\n\n\t\tte[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31;\n\t\tte[ 3 ] = a11 * b12 + a12 * b22 + a13 * b32;\n\t\tte[ 6 ] = a11 * b13 + a12 * b23 + a13 * b33;\n\n\t\tte[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31;\n\t\tte[ 4 ] = a21 * b12 + a22 * b22 + a23 * b32;\n\t\tte[ 7 ] = a21 * b13 + a22 * b23 + a23 * b33;\n\n\t\tte[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31;\n\t\tte[ 5 ] = a31 * b12 + a32 * b22 + a33 * b32;\n\t\tte[ 8 ] = a31 * b13 + a32 * b23 + a33 * b33;\n\n\t\treturn this;\n\n\t},\n\n\tmultiplyScalar: function ( s ) {\n\n\t\tvar te = this.elements;\n\n\t\tte[ 0 ] *= s; te[ 3 ] *= s; te[ 6 ] *= s;\n\t\tte[ 1 ] *= s; te[ 4 ] *= s; te[ 7 ] *= s;\n\t\tte[ 2 ] *= s; te[ 5 ] *= s; te[ 8 ] *= s;\n\n\t\treturn this;\n\n\t},\n\n\tdeterminant: function () {\n\n\t\tvar te = this.elements;\n\n\t\tvar a = te[ 0 ], b = te[ 1 ], c = te[ 2 ],\n\t\t\td = te[ 3 ], e = te[ 4 ], f = te[ 5 ],\n\t\t\tg = te[ 6 ], h = te[ 7 ], i = te[ 8 ];\n\n\t\treturn a * e * i - a * f * h - b * d * i + b * f * g + c * d * h - c * e * g;\n\n\t},\n\n\tgetInverse: function ( matrix, throwOnDegenerate ) {\n\n\t\tif ( matrix && matrix.isMatrix4 ) {\n\n\t\t\tconsole.error( \"THREE.Matrix3: .getInverse() no longer takes a Matrix4 argument.\" );\n\n\t\t}\n\n\t\tvar me = matrix.elements,\n\t\t\tte = this.elements,\n\n\t\t\tn11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ],\n\t\t\tn12 = me[ 3 ], n22 = me[ 4 ], n32 = me[ 5 ],\n\t\t\tn13 = me[ 6 ], n23 = me[ 7 ], n33 = me[ 8 ],\n\n\t\t\tt11 = n33 * n22 - n32 * n23,\n\t\t\tt12 = n32 * n13 - n33 * n12,\n\t\t\tt13 = n23 * n12 - n22 * n13,\n\n\t\t\tdet = n11 * t11 + n21 * t12 + n31 * t13;\n\n\t\tif ( det === 0 ) {\n\n\t\t\tvar msg = \"THREE.Matrix3: .getInverse() can't invert matrix, determinant is 0\";\n\n\t\t\tif ( throwOnDegenerate === true ) {\n\n\t\t\t\tthrow new Error( msg );\n\n\t\t\t} else {\n\n\t\t\t\tconsole.warn( msg );\n\n\t\t\t}\n\n\t\t\treturn this.identity();\n\n\t\t}\n\n\t\tvar detInv = 1 / det;\n\n\t\tte[ 0 ] = t11 * detInv;\n\t\tte[ 1 ] = ( n31 * n23 - n33 * n21 ) * detInv;\n\t\tte[ 2 ] = ( n32 * n21 - n31 * n22 ) * detInv;\n\n\t\tte[ 3 ] = t12 * detInv;\n\t\tte[ 4 ] = ( n33 * n11 - n31 * n13 ) * detInv;\n\t\tte[ 5 ] = ( n31 * n12 - n32 * n11 ) * detInv;\n\n\t\tte[ 6 ] = t13 * detInv;\n\t\tte[ 7 ] = ( n21 * n13 - n23 * n11 ) * detInv;\n\t\tte[ 8 ] = ( n22 * n11 - n21 * n12 ) * detInv;\n\n\t\treturn this;\n\n\t},\n\n\ttranspose: function () {\n\n\t\tvar tmp, m = this.elements;\n\n\t\ttmp = m[ 1 ]; m[ 1 ] = m[ 3 ]; m[ 3 ] = tmp;\n\t\ttmp = m[ 2 ]; m[ 2 ] = m[ 6 ]; m[ 6 ] = tmp;\n\t\ttmp = m[ 5 ]; m[ 5 ] = m[ 7 ]; m[ 7 ] = tmp;\n\n\t\treturn this;\n\n\t},\n\n\tgetNormalMatrix: function ( matrix4 ) {\n\n\t\treturn this.setFromMatrix4( matrix4 ).getInverse( this ).transpose();\n\n\t},\n\n\ttransposeIntoArray: function ( r ) {\n\n\t\tvar m = this.elements;\n\n\t\tr[ 0 ] = m[ 0 ];\n\t\tr[ 1 ] = m[ 3 ];\n\t\tr[ 2 ] = m[ 6 ];\n\t\tr[ 3 ] = m[ 1 ];\n\t\tr[ 4 ] = m[ 4 ];\n\t\tr[ 5 ] = m[ 7 ];\n\t\tr[ 6 ] = m[ 2 ];\n\t\tr[ 7 ] = m[ 5 ];\n\t\tr[ 8 ] = m[ 8 ];\n\n\t\treturn this;\n\n\t},\n\n\tsetUvTransform: function ( tx, ty, sx, sy, rotation, cx, cy ) {\n\n\t\tvar c = Math.cos( rotation );\n\t\tvar s = Math.sin( rotation );\n\n\t\tthis.set(\n\t\t\tsx * c, sx * s, - sx * ( c * cx + s * cy ) + cx + tx,\n\t\t\t- sy * s, sy * c, - sy * ( - s * cx + c * cy ) + cy + ty,\n\t\t\t0, 0, 1\n\t\t);\n\n\t},\n\n\tscale: function ( sx, sy ) {\n\n\t\tvar te = this.elements;\n\n\t\tte[ 0 ] *= sx; te[ 3 ] *= sx; te[ 6 ] *= sx;\n\t\tte[ 1 ] *= sy; te[ 4 ] *= sy; te[ 7 ] *= sy;\n\n\t\treturn this;\n\n\t},\n\n\trotate: function ( theta ) {\n\n\t\tvar c = Math.cos( theta );\n\t\tvar s = Math.sin( theta );\n\n\t\tvar te = this.elements;\n\n\t\tvar a11 = te[ 0 ], a12 = te[ 3 ], a13 = te[ 6 ];\n\t\tvar a21 = te[ 1 ], a22 = te[ 4 ], a23 = te[ 7 ];\n\n\t\tte[ 0 ] = c * a11 + s * a21;\n\t\tte[ 3 ] = c * a12 + s * a22;\n\t\tte[ 6 ] = c * a13 + s * a23;\n\n\t\tte[ 1 ] = - s * a11 + c * a21;\n\t\tte[ 4 ] = - s * a12 + c * a22;\n\t\tte[ 7 ] = - s * a13 + c * a23;\n\n\t\treturn this;\n\n\t},\n\n\ttranslate: function ( tx, ty ) {\n\n\t\tvar te = this.elements;\n\n\t\tte[ 0 ] += tx * te[ 2 ]; te[ 3 ] += tx * te[ 5 ]; te[ 6 ] += tx * te[ 8 ];\n\t\tte[ 1 ] += ty * te[ 2 ]; te[ 4 ] += ty * te[ 5 ]; te[ 7 ] += ty * te[ 8 ];\n\n\t\treturn this;\n\n\t},\n\n\tequals: function ( matrix ) {\n\n\t\tvar te = this.elements;\n\t\tvar me = matrix.elements;\n\n\t\tfor ( var i = 0; i < 9; i ++ ) {\n\n\t\t\tif ( te[ i ] !== me[ i ] ) return false;\n\n\t\t}\n\n\t\treturn true;\n\n\t},\n\n\tfromArray: function ( array, offset ) {\n\n\t\tif ( offset === undefined ) offset = 0;\n\n\t\tfor ( var i = 0; i < 9; i ++ ) {\n\n\t\t\tthis.elements[ i ] = array[ i + offset ];\n\n\t\t}\n\n\t\treturn this;\n\n\t},\n\n\ttoArray: function ( array, offset ) {\n\n\t\tif ( array === undefined ) array = [];\n\t\tif ( offset === undefined ) offset = 0;\n\n\t\tvar te = this.elements;\n\n\t\tarray[ offset ] = te[ 0 ];\n\t\tarray[ offset + 1 ] = te[ 1 ];\n\t\tarray[ offset + 2 ] = te[ 2 ];\n\n\t\tarray[ offset + 3 ] = te[ 3 ];\n\t\tarray[ offset + 4 ] = te[ 4 ];\n\t\tarray[ offset + 5 ] = te[ 5 ];\n\n\t\tarray[ offset + 6 ] = te[ 6 ];\n\t\tarray[ offset + 7 ] = te[ 7 ];\n\t\tarray[ offset + 8 ] = te[ 8 ];\n\n\t\treturn array;\n\n\t}\n\n} );\n\n/**\n * @author mrdoob / http://mrdoob.com/\n * @author alteredq / http://alteredqualia.com/\n * @author szimek / https://github.com/szimek/\n */\n\nvar _canvas;\n\nvar ImageUtils = {\n\n\tgetDataURL: function ( image ) {\n\n\t\tvar canvas;\n\n\t\tif ( typeof HTMLCanvasElement == 'undefined' ) {\n\n\t\t\treturn image.src;\n\n\t\t} else if ( image instanceof HTMLCanvasElement ) {\n\n\t\t\tcanvas = image;\n\n\t\t} else {\n\n\t\t\tif ( _canvas === undefined ) _canvas = document.createElementNS( 'http://www.w3.org/1999/xhtml', 'canvas' );\n\n\t\t\t_canvas.width = image.width;\n\t\t\t_canvas.height = image.height;\n\n\t\t\tvar context = _canvas.getContext( '2d' );\n\n\t\t\tif ( image instanceof ImageData ) {\n\n\t\t\t\tcontext.putImageData( image, 0, 0 );\n\n\t\t\t} else {\n\n\t\t\t\tcontext.drawImage( image, 0, 0, image.width, image.height );\n\n\t\t\t}\n\n\t\t\tcanvas = _canvas;\n\n\t\t}\n\n\t\tif ( canvas.width > 2048 || canvas.height > 2048 ) {\n\n\t\t\treturn canvas.toDataURL( 'image/jpeg', 0.6 );\n\n\t\t} else {\n\n\t\t\treturn canvas.toDataURL( 'image/png' );\n\n\t\t}\n\n\t}\n\n};\n\n/**\n * @author mrdoob / http://mrdoob.com/\n * @author alteredq / http://alteredqualia.com/\n * @author szimek / https://github.com/szimek/\n */\n\nvar textureId = 0;\n\nfunction Texture( image, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding ) {\n\n\tObject.defineProperty( this, 'id', { value: textureId ++ } );\n\n\tthis.uuid = _Math.generateUUID();\n\n\tthis.name = '';\n\n\tthis.image = image !== undefined ? image : Texture.DEFAULT_IMAGE;\n\tthis.mipmaps = [];\n\n\tthis.mapping = mapping !== undefined ? mapping : Texture.DEFAULT_MAPPING;\n\n\tthis.wrapS = wrapS !== undefined ? wrapS : ClampToEdgeWrapping;\n\tthis.wrapT = wrapT !== undefined ? wrapT : ClampToEdgeWrapping;\n\n\tthis.magFilter = magFilter !== undefined ? magFilter : LinearFilter;\n\tthis.minFilter = minFilter !== undefined ? minFilter : LinearMipMapLinearFilter;\n\n\tthis.anisotropy = anisotropy !== undefined ? anisotropy : 1;\n\n\tthis.format = format !== undefined ? format : RGBAFormat;\n\tthis.type = type !== undefined ? type : UnsignedByteType;\n\n\tthis.offset = new Vector2( 0, 0 );\n\tthis.repeat = new Vector2( 1, 1 );\n\tthis.center = new Vector2( 0, 0 );\n\tthis.rotation = 0;\n\n\tthis.matrixAutoUpdate = true;\n\tthis.matrix = new Matrix3();\n\n\tthis.generateMipmaps = true;\n\tthis.premultiplyAlpha = false;\n\tthis.flipY = true;\n\tthis.unpackAlignment = 4;\t// valid values: 1, 2, 4, 8 (see http://www.khronos.org/opengles/sdk/docs/man/xhtml/glPixelStorei.xml)\n\n\t// Values of encoding !== THREE.LinearEncoding only supported on map, envMap and emissiveMap.\n\t//\n\t// Also changing the encoding after already used by a Material will not automatically make the Material\n\t// update. You need to explicitly call Material.needsUpdate to trigger it to recompile.\n\tthis.encoding = encoding !== undefined ? encoding : LinearEncoding;\n\n\tthis.version = 0;\n\tthis.onUpdate = null;\n\n}\n\nTexture.DEFAULT_IMAGE = undefined;\nTexture.DEFAULT_MAPPING = UVMapping;\n\nTexture.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {\n\n\tconstructor: Texture,\n\n\tisTexture: true,\n\n\tupdateMatrix: function () {\n\n\t\tthis.matrix.setUvTransform( this.offset.x, this.offset.y, this.repeat.x, this.repeat.y, this.rotation, this.center.x, this.center.y );\n\n\t},\n\n\tclone: function () {\n\n\t\treturn new this.constructor().copy( this );\n\n\t},\n\n\tcopy: function ( source ) {\n\n\t\tthis.name = source.name;\n\n\t\tthis.image = source.image;\n\t\tthis.mipmaps = source.mipmaps.slice( 0 );\n\n\t\tthis.mapping = source.mapping;\n\n\t\tthis.wrapS = source.wrapS;\n\t\tthis.wrapT = source.wrapT;\n\n\t\tthis.magFilter = source.magFilter;\n\t\tthis.minFilter = source.minFilter;\n\n\t\tthis.anisotropy = source.anisotropy;\n\n\t\tthis.format = source.format;\n\t\tthis.type = source.type;\n\n\t\tthis.offset.copy( source.offset );\n\t\tthis.repeat.copy( source.repeat );\n\t\tthis.center.copy( source.center );\n\t\tthis.rotation = source.rotation;\n\n\t\tthis.matrixAutoUpdate = source.matrixAutoUpdate;\n\t\tthis.matrix.copy( source.matrix );\n\n\t\tthis.generateMipmaps = source.generateMipmaps;\n\t\tthis.premultiplyAlpha = source.premultiplyAlpha;\n\t\tthis.flipY = source.flipY;\n\t\tthis.unpackAlignment = source.unpackAlignment;\n\t\tthis.encoding = source.encoding;\n\n\t\treturn this;\n\n\t},\n\n\ttoJSON: function ( meta ) {\n\n\t\tvar isRootObject = ( meta === undefined || typeof meta === 'string' );\n\n\t\tif ( ! isRootObject && meta.textures[ this.uuid ] !== undefined ) {\n\n\t\t\treturn meta.textures[ this.uuid ];\n\n\t\t}\n\n\t\tvar output = {\n\n\t\t\tmetadata: {\n\t\t\t\tversion: 4.5,\n\t\t\t\ttype: 'Texture',\n\t\t\t\tgenerator: 'Texture.toJSON'\n\t\t\t},\n\n\t\t\tuuid: this.uuid,\n\t\t\tname: this.name,\n\n\t\t\tmapping: this.mapping,\n\n\t\t\trepeat: [ this.repeat.x, this.repeat.y ],\n\t\t\toffset: [ this.offset.x, this.offset.y ],\n\t\t\tcenter: [ this.center.x, this.center.y ],\n\t\t\trotation: this.rotation,\n\n\t\t\twrap: [ this.wrapS, this.wrapT ],\n\n\t\t\tformat: this.format,\n\t\t\ttype: this.type,\n\t\t\tencoding: this.encoding,\n\n\t\t\tminFilter: this.minFilter,\n\t\t\tmagFilter: this.magFilter,\n\t\t\tanisotropy: this.anisotropy,\n\n\t\t\tflipY: this.flipY,\n\n\t\t\tpremultiplyAlpha: this.premultiplyAlpha,\n\t\t\tunpackAlignment: this.unpackAlignment\n\n\t\t};\n\n\t\tif ( this.image !== undefined ) {\n\n\t\t\t// TODO: Move to THREE.Image\n\n\t\t\tvar image = this.image;\n\n\t\t\tif ( image.uuid === undefined ) {\n\n\t\t\t\timage.uuid = _Math.generateUUID(); // UGH\n\n\t\t\t}\n\n\t\t\tif ( ! isRootObject && meta.images[ image.uuid ] === undefined ) {\n\n\t\t\t\tvar url;\n\n\t\t\t\tif ( Array.isArray( image ) ) {\n\n\t\t\t\t\t// process array of images e.g. CubeTexture\n\n\t\t\t\t\turl = [];\n\n\t\t\t\t\tfor ( var i = 0, l = image.length; i < l; i ++ ) {\n\n\t\t\t\t\t\turl.push( ImageUtils.getDataURL( image[ i ] ) );\n\n\t\t\t\t\t}\n\n\t\t\t\t} else {\n\n\t\t\t\t\t// process single image\n\n\t\t\t\t\turl = ImageUtils.getDataURL( image );\n\n\t\t\t\t}\n\n\t\t\t\tmeta.images[ image.uuid ] = {\n\t\t\t\t\tuuid: image.uuid,\n\t\t\t\t\turl: url\n\t\t\t\t};\n\n\t\t\t}\n\n\t\t\toutput.image = image.uuid;\n\n\t\t}\n\n\t\tif ( ! isRootObject ) {\n\n\t\t\tmeta.textures[ this.uuid ] = output;\n\n\t\t}\n\n\t\treturn output;\n\n\t},\n\n\tdispose: function () {\n\n\t\tthis.dispatchEvent( { type: 'dispose' } );\n\n\t},\n\n\ttransformUv: function ( uv ) {\n\n\t\tif ( this.mapping !== UVMapping ) return uv;\n\n\t\tuv.applyMatrix3( this.matrix );\n\n\t\tif ( uv.x < 0 || uv.x > 1 ) {\n\n\t\t\tswitch ( this.wrapS ) {\n\n\t\t\t\tcase RepeatWrapping:\n\n\t\t\t\t\tuv.x = uv.x - Math.floor( uv.x );\n\t\t\t\t\tbreak;\n\n\t\t\t\tcase ClampToEdgeWrapping:\n\n\t\t\t\t\tuv.x = uv.x < 0 ? 0 : 1;\n\t\t\t\t\tbreak;\n\n\t\t\t\tcase MirroredRepeatWrapping:\n\n\t\t\t\t\tif ( Math.abs( Math.floor( uv.x ) % 2 ) === 1 ) {\n\n\t\t\t\t\t\tuv.x = Math.ceil( uv.x ) - uv.x;\n\n\t\t\t\t\t} else {\n\n\t\t\t\t\t\tuv.x = uv.x - Math.floor( uv.x );\n\n\t\t\t\t\t}\n\t\t\t\t\tbreak;\n\n\t\t\t}\n\n\t\t}\n\n\t\tif ( uv.y < 0 || uv.y > 1 ) {\n\n\t\t\tswitch ( this.wrapT ) {\n\n\t\t\t\tcase RepeatWrapping:\n\n\t\t\t\t\tuv.y = uv.y - Math.floor( uv.y );\n\t\t\t\t\tbreak;\n\n\t\t\t\tcase ClampToEdgeWrapping:\n\n\t\t\t\t\tuv.y = uv.y < 0 ? 0 : 1;\n\t\t\t\t\tbreak;\n\n\t\t\t\tcase MirroredRepeatWrapping:\n\n\t\t\t\t\tif ( Math.abs( Math.floor( uv.y ) % 2 ) === 1 ) {\n\n\t\t\t\t\t\tuv.y = Math.ceil( uv.y ) - uv.y;\n\n\t\t\t\t\t} else {\n\n\t\t\t\t\t\tuv.y = uv.y - Math.floor( uv.y );\n\n\t\t\t\t\t}\n\t\t\t\t\tbreak;\n\n\t\t\t}\n\n\t\t}\n\n\t\tif ( this.flipY ) {\n\n\t\t\tuv.y = 1 - uv.y;\n\n\t\t}\n\n\t\treturn uv;\n\n\t}\n\n} );\n\nObject.defineProperty( Texture.prototype, \"needsUpdate\", {\n\n\tset: function ( value ) {\n\n\t\tif ( value === true ) this.version ++;\n\n\t}\n\n} );\n\n/**\n * @author supereggbert / http://www.paulbrunt.co.uk/\n * @author philogb / http://blog.thejit.org/\n * @author mikael emtinger / http://gomo.se/\n * @author egraether / http://egraether.com/\n * @author WestLangley / http://github.com/WestLangley\n */\n\nfunction Vector4( x, y, z, w ) {\n\n\tthis.x = x || 0;\n\tthis.y = y || 0;\n\tthis.z = z || 0;\n\tthis.w = ( w !== undefined ) ? w : 1;\n\n}\n\nObject.assign( Vector4.prototype, {\n\n\tisVector4: true,\n\n\tset: function ( x, y, z, w ) {\n\n\t\tthis.x = x;\n\t\tthis.y = y;\n\t\tthis.z = z;\n\t\tthis.w = w;\n\n\t\treturn this;\n\n\t},\n\n\tsetScalar: function ( scalar ) {\n\n\t\tthis.x = scalar;\n\t\tthis.y = scalar;\n\t\tthis.z = scalar;\n\t\tthis.w = scalar;\n\n\t\treturn this;\n\n\t},\n\n\tsetX: function ( x ) {\n\n\t\tthis.x = x;\n\n\t\treturn this;\n\n\t},\n\n\tsetY: function ( y ) {\n\n\t\tthis.y = y;\n\n\t\treturn this;\n\n\t},\n\n\tsetZ: function ( z ) {\n\n\t\tthis.z = z;\n\n\t\treturn this;\n\n\t},\n\n\tsetW: function ( w ) {\n\n\t\tthis.w = w;\n\n\t\treturn this;\n\n\t},\n\n\tsetComponent: function ( index, value ) {\n\n\t\tswitch ( index ) {\n\n\t\t\tcase 0: this.x = value; break;\n\t\t\tcase 1: this.y = value; break;\n\t\t\tcase 2: this.z = value; break;\n\t\t\tcase 3: this.w = value; break;\n\t\t\tdefault: throw new Error( 'index is out of range: ' + index );\n\n\t\t}\n\n\t\treturn this;\n\n\t},\n\n\tgetComponent: function ( index ) {\n\n\t\tswitch ( index ) {\n\n\t\t\tcase 0: return this.x;\n\t\t\tcase 1: return this.y;\n\t\t\tcase 2: return this.z;\n\t\t\tcase 3: return this.w;\n\t\t\tdefault: throw new Error( 'index is out of range: ' + index );\n\n\t\t}\n\n\t},\n\n\tclone: function () {\n\n\t\treturn new this.constructor( this.x, this.y, this.z, this.w );\n\n\t},\n\n\tcopy: function ( v ) {\n\n\t\tthis.x = v.x;\n\t\tthis.y = v.y;\n\t\tthis.z = v.z;\n\t\tthis.w = ( v.w !== undefined ) ? v.w : 1;\n\n\t\treturn this;\n\n\t},\n\n\tadd: function ( v, w ) {\n\n\t\tif ( w !== undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Vector4: .add() now only accepts one argument. Use .addVectors( a, b ) instead.' );\n\t\t\treturn this.addVectors( v, w );\n\n\t\t}\n\n\t\tthis.x += v.x;\n\t\tthis.y += v.y;\n\t\tthis.z += v.z;\n\t\tthis.w += v.w;\n\n\t\treturn this;\n\n\t},\n\n\taddScalar: function ( s ) {\n\n\t\tthis.x += s;\n\t\tthis.y += s;\n\t\tthis.z += s;\n\t\tthis.w += s;\n\n\t\treturn this;\n\n\t},\n\n\taddVectors: function ( a, b ) {\n\n\t\tthis.x = a.x + b.x;\n\t\tthis.y = a.y + b.y;\n\t\tthis.z = a.z + b.z;\n\t\tthis.w = a.w + b.w;\n\n\t\treturn this;\n\n\t},\n\n\taddScaledVector: function ( v, s ) {\n\n\t\tthis.x += v.x * s;\n\t\tthis.y += v.y * s;\n\t\tthis.z += v.z * s;\n\t\tthis.w += v.w * s;\n\n\t\treturn this;\n\n\t},\n\n\tsub: function ( v, w ) {\n\n\t\tif ( w !== undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Vector4: .sub() now only accepts one argument. Use .subVectors( a, b ) instead.' );\n\t\t\treturn this.subVectors( v, w );\n\n\t\t}\n\n\t\tthis.x -= v.x;\n\t\tthis.y -= v.y;\n\t\tthis.z -= v.z;\n\t\tthis.w -= v.w;\n\n\t\treturn this;\n\n\t},\n\n\tsubScalar: function ( s ) {\n\n\t\tthis.x -= s;\n\t\tthis.y -= s;\n\t\tthis.z -= s;\n\t\tthis.w -= s;\n\n\t\treturn this;\n\n\t},\n\n\tsubVectors: function ( a, b ) {\n\n\t\tthis.x = a.x - b.x;\n\t\tthis.y = a.y - b.y;\n\t\tthis.z = a.z - b.z;\n\t\tthis.w = a.w - b.w;\n\n\t\treturn this;\n\n\t},\n\n\tmultiplyScalar: function ( scalar ) {\n\n\t\tthis.x *= scalar;\n\t\tthis.y *= scalar;\n\t\tthis.z *= scalar;\n\t\tthis.w *= scalar;\n\n\t\treturn this;\n\n\t},\n\n\tapplyMatrix4: function ( m ) {\n\n\t\tvar x = this.x, y = this.y, z = this.z, w = this.w;\n\t\tvar e = m.elements;\n\n\t\tthis.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;\n\t\tthis.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;\n\t\tthis.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;\n\t\tthis.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;\n\n\t\treturn this;\n\n\t},\n\n\tdivideScalar: function ( scalar ) {\n\n\t\treturn this.multiplyScalar( 1 / scalar );\n\n\t},\n\n\tsetAxisAngleFromQuaternion: function ( q ) {\n\n\t\t// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm\n\n\t\t// q is assumed to be normalized\n\n\t\tthis.w = 2 * Math.acos( q.w );\n\n\t\tvar s = Math.sqrt( 1 - q.w * q.w );\n\n\t\tif ( s < 0.0001 ) {\n\n\t\t\tthis.x = 1;\n\t\t\tthis.y = 0;\n\t\t\tthis.z = 0;\n\n\t\t} else {\n\n\t\t\tthis.x = q.x / s;\n\t\t\tthis.y = q.y / s;\n\t\t\tthis.z = q.z / s;\n\n\t\t}\n\n\t\treturn this;\n\n\t},\n\n\tsetAxisAngleFromRotationMatrix: function ( m ) {\n\n\t\t// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm\n\n\t\t// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)\n\n\t\tvar angle, x, y, z,\t\t// variables for result\n\t\t\tepsilon = 0.01,\t\t// margin to allow for rounding errors\n\t\t\tepsilon2 = 0.1,\t\t// margin to distinguish between 0 and 180 degrees\n\n\t\t\tte = m.elements,\n\n\t\t\tm11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],\n\t\t\tm21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],\n\t\t\tm31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];\n\n\t\tif ( ( Math.abs( m12 - m21 ) < epsilon ) &&\n\t\t ( Math.abs( m13 - m31 ) < epsilon ) &&\n\t\t ( Math.abs( m23 - m32 ) < epsilon ) ) {\n\n\t\t\t// singularity found\n\t\t\t// first check for identity matrix which must have +1 for all terms\n\t\t\t// in leading diagonal and zero in other terms\n\n\t\t\tif ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&\n\t\t\t ( Math.abs( m13 + m31 ) < epsilon2 ) &&\n\t\t\t ( Math.abs( m23 + m32 ) < epsilon2 ) &&\n\t\t\t ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {\n\n\t\t\t\t// this singularity is identity matrix so angle = 0\n\n\t\t\t\tthis.set( 1, 0, 0, 0 );\n\n\t\t\t\treturn this; // zero angle, arbitrary axis\n\n\t\t\t}\n\n\t\t\t// otherwise this singularity is angle = 180\n\n\t\t\tangle = Math.PI;\n\n\t\t\tvar xx = ( m11 + 1 ) / 2;\n\t\t\tvar yy = ( m22 + 1 ) / 2;\n\t\t\tvar zz = ( m33 + 1 ) / 2;\n\t\t\tvar xy = ( m12 + m21 ) / 4;\n\t\t\tvar xz = ( m13 + m31 ) / 4;\n\t\t\tvar yz = ( m23 + m32 ) / 4;\n\n\t\t\tif ( ( xx > yy ) && ( xx > zz ) ) {\n\n\t\t\t\t// m11 is the largest diagonal term\n\n\t\t\t\tif ( xx < epsilon ) {\n\n\t\t\t\t\tx = 0;\n\t\t\t\t\ty = 0.707106781;\n\t\t\t\t\tz = 0.707106781;\n\n\t\t\t\t} else {\n\n\t\t\t\t\tx = Math.sqrt( xx );\n\t\t\t\t\ty = xy / x;\n\t\t\t\t\tz = xz / x;\n\n\t\t\t\t}\n\n\t\t\t} else if ( yy > zz ) {\n\n\t\t\t\t// m22 is the largest diagonal term\n\n\t\t\t\tif ( yy < epsilon ) {\n\n\t\t\t\t\tx = 0.707106781;\n\t\t\t\t\ty = 0;\n\t\t\t\t\tz = 0.707106781;\n\n\t\t\t\t} else {\n\n\t\t\t\t\ty = Math.sqrt( yy );\n\t\t\t\t\tx = xy / y;\n\t\t\t\t\tz = yz / y;\n\n\t\t\t\t}\n\n\t\t\t} else {\n\n\t\t\t\t// m33 is the largest diagonal term so base result on this\n\n\t\t\t\tif ( zz < epsilon ) {\n\n\t\t\t\t\tx = 0.707106781;\n\t\t\t\t\ty = 0.707106781;\n\t\t\t\t\tz = 0;\n\n\t\t\t\t} else {\n\n\t\t\t\t\tz = Math.sqrt( zz );\n\t\t\t\t\tx = xz / z;\n\t\t\t\t\ty = yz / z;\n\n\t\t\t\t}\n\n\t\t\t}\n\n\t\t\tthis.set( x, y, z, angle );\n\n\t\t\treturn this; // return 180 deg rotation\n\n\t\t}\n\n\t\t// as we have reached here there are no singularities so we can handle normally\n\n\t\tvar s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +\n\t\t ( m13 - m31 ) * ( m13 - m31 ) +\n\t\t ( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize\n\n\t\tif ( Math.abs( s ) < 0.001 ) s = 1;\n\n\t\t// prevent divide by zero, should not happen if matrix is orthogonal and should be\n\t\t// caught by singularity test above, but I've left it in just in case\n\n\t\tthis.x = ( m32 - m23 ) / s;\n\t\tthis.y = ( m13 - m31 ) / s;\n\t\tthis.z = ( m21 - m12 ) / s;\n\t\tthis.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );\n\n\t\treturn this;\n\n\t},\n\n\tmin: function ( v ) {\n\n\t\tthis.x = Math.min( this.x, v.x );\n\t\tthis.y = Math.min( this.y, v.y );\n\t\tthis.z = Math.min( this.z, v.z );\n\t\tthis.w = Math.min( this.w, v.w );\n\n\t\treturn this;\n\n\t},\n\n\tmax: function ( v ) {\n\n\t\tthis.x = Math.max( this.x, v.x );\n\t\tthis.y = Math.max( this.y, v.y );\n\t\tthis.z = Math.max( this.z, v.z );\n\t\tthis.w = Math.max( this.w, v.w );\n\n\t\treturn this;\n\n\t},\n\n\tclamp: function ( min, max ) {\n\n\t\t// assumes min < max, componentwise\n\n\t\tthis.x = Math.max( min.x, Math.min( max.x, this.x ) );\n\t\tthis.y = Math.max( min.y, Math.min( max.y, this.y ) );\n\t\tthis.z = Math.max( min.z, Math.min( max.z, this.z ) );\n\t\tthis.w = Math.max( min.w, Math.min( max.w, this.w ) );\n\n\t\treturn this;\n\n\t},\n\n\tclampScalar: function () {\n\n\t\tvar min, max;\n\n\t\treturn function clampScalar( minVal, maxVal ) {\n\n\t\t\tif ( min === undefined ) {\n\n\t\t\t\tmin = new Vector4();\n\t\t\t\tmax = new Vector4();\n\n\t\t\t}\n\n\t\t\tmin.set( minVal, minVal, minVal, minVal );\n\t\t\tmax.set( maxVal, maxVal, maxVal, maxVal );\n\n\t\t\treturn this.clamp( min, max );\n\n\t\t};\n\n\t}(),\n\n\tclampLength: function ( min, max ) {\n\n\t\tvar length = this.length();\n\n\t\treturn this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );\n\n\t},\n\n\tfloor: function () {\n\n\t\tthis.x = Math.floor( this.x );\n\t\tthis.y = Math.floor( this.y );\n\t\tthis.z = Math.floor( this.z );\n\t\tthis.w = Math.floor( this.w );\n\n\t\treturn this;\n\n\t},\n\n\tceil: function () {\n\n\t\tthis.x = Math.ceil( this.x );\n\t\tthis.y = Math.ceil( this.y );\n\t\tthis.z = Math.ceil( this.z );\n\t\tthis.w = Math.ceil( this.w );\n\n\t\treturn this;\n\n\t},\n\n\tround: function () {\n\n\t\tthis.x = Math.round( this.x );\n\t\tthis.y = Math.round( this.y );\n\t\tthis.z = Math.round( this.z );\n\t\tthis.w = Math.round( this.w );\n\n\t\treturn this;\n\n\t},\n\n\troundToZero: function () {\n\n\t\tthis.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );\n\t\tthis.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );\n\t\tthis.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );\n\t\tthis.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w );\n\n\t\treturn this;\n\n\t},\n\n\tnegate: function () {\n\n\t\tthis.x = - this.x;\n\t\tthis.y = - this.y;\n\t\tthis.z = - this.z;\n\t\tthis.w = - this.w;\n\n\t\treturn this;\n\n\t},\n\n\tdot: function ( v ) {\n\n\t\treturn this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;\n\n\t},\n\n\tlengthSq: function () {\n\n\t\treturn this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;\n\n\t},\n\n\tlength: function () {\n\n\t\treturn Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );\n\n\t},\n\n\tmanhattanLength: function () {\n\n\t\treturn Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );\n\n\t},\n\n\tnormalize: function () {\n\n\t\treturn this.divideScalar( this.length() || 1 );\n\n\t},\n\n\tsetLength: function ( length ) {\n\n\t\treturn this.normalize().multiplyScalar( length );\n\n\t},\n\n\tlerp: function ( v, alpha ) {\n\n\t\tthis.x += ( v.x - this.x ) * alpha;\n\t\tthis.y += ( v.y - this.y ) * alpha;\n\t\tthis.z += ( v.z - this.z ) * alpha;\n\t\tthis.w += ( v.w - this.w ) * alpha;\n\n\t\treturn this;\n\n\t},\n\n\tlerpVectors: function ( v1, v2, alpha ) {\n\n\t\treturn this.subVectors( v2, v1 ).multiplyScalar( alpha ).add( v1 );\n\n\t},\n\n\tequals: function ( v ) {\n\n\t\treturn ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );\n\n\t},\n\n\tfromArray: function ( array, offset ) {\n\n\t\tif ( offset === undefined ) offset = 0;\n\n\t\tthis.x = array[ offset ];\n\t\tthis.y = array[ offset + 1 ];\n\t\tthis.z = array[ offset + 2 ];\n\t\tthis.w = array[ offset + 3 ];\n\n\t\treturn this;\n\n\t},\n\n\ttoArray: function ( array, offset ) {\n\n\t\tif ( array === undefined ) array = [];\n\t\tif ( offset === undefined ) offset = 0;\n\n\t\tarray[ offset ] = this.x;\n\t\tarray[ offset + 1 ] = this.y;\n\t\tarray[ offset + 2 ] = this.z;\n\t\tarray[ offset + 3 ] = this.w;\n\n\t\treturn array;\n\n\t},\n\n\tfromBufferAttribute: function ( attribute, index, offset ) {\n\n\t\tif ( offset !== undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Vector4: offset has been removed from .fromBufferAttribute().' );\n\n\t\t}\n\n\t\tthis.x = attribute.getX( index );\n\t\tthis.y = attribute.getY( index );\n\t\tthis.z = attribute.getZ( index );\n\t\tthis.w = attribute.getW( index );\n\n\t\treturn this;\n\n\t}\n\n} );\n\n/**\n * @author szimek / https://github.com/szimek/\n * @author alteredq / http://alteredqualia.com/\n * @author Marius Kintel / https://github.com/kintel\n */\n\n/*\n In options, we can specify:\n * Texture parameters for an auto-generated target texture\n * depthBuffer/stencilBuffer: Booleans to indicate if we should generate these buffers\n*/\nfunction WebGLRenderTarget( width, height, options ) {\n\n\tthis.width = width;\n\tthis.height = height;\n\n\tthis.scissor = new Vector4( 0, 0, width, height );\n\tthis.scissorTest = false;\n\n\tthis.viewport = new Vector4( 0, 0, width, height );\n\n\toptions = options || {};\n\n\tthis.texture = new Texture( undefined, undefined, options.wrapS, options.wrapT, options.magFilter, options.minFilter, options.format, options.type, options.anisotropy, options.encoding );\n\n\tthis.texture.generateMipmaps = options.generateMipmaps !== undefined ? options.generateMipmaps : false;\n\tthis.texture.minFilter = options.minFilter !== undefined ? options.minFilter : LinearFilter;\n\n\tthis.depthBuffer = options.depthBuffer !== undefined ? options.depthBuffer : true;\n\tthis.stencilBuffer = options.stencilBuffer !== undefined ? options.stencilBuffer : true;\n\tthis.depthTexture = options.depthTexture !== undefined ? options.depthTexture : null;\n\n}\n\nWebGLRenderTarget.prototype = Object.assign( Object.create( EventDispatcher.prototype ), {\n\n\tconstructor: WebGLRenderTarget,\n\n\tisWebGLRenderTarget: true,\n\n\tsetSize: function ( width, height ) {\n\n\t\tif ( this.width !== width || this.height !== height ) {\n\n\t\t\tthis.width = width;\n\t\t\tthis.height = height;\n\n\t\t\tthis.dispose();\n\n\t\t}\n\n\t\tthis.viewport.set( 0, 0, width, height );\n\t\tthis.scissor.set( 0, 0, width, height );\n\n\t},\n\n\tclone: function () {\n\n\t\treturn new this.constructor().copy( this );\n\n\t},\n\n\tcopy: function ( source ) {\n\n\t\tthis.width = source.width;\n\t\tthis.height = source.height;\n\n\t\tthis.viewport.copy( source.viewport );\n\n\t\tthis.texture = source.texture.clone();\n\n\t\tthis.depthBuffer = source.depthBuffer;\n\t\tthis.stencilBuffer = source.stencilBuffer;\n\t\tthis.depthTexture = source.depthTexture;\n\n\t\treturn this;\n\n\t},\n\n\tdispose: function () {\n\n\t\tthis.dispatchEvent( { type: 'dispose' } );\n\n\t}\n\n} );\n\n/**\n * @author Mugen87 / https://github.com/Mugen87\n * @author Matt DesLauriers / @mattdesl\n */\n\nfunction WebGLMultisampleRenderTarget( width, height, options ) {\n\n\tWebGLRenderTarget.call( this, width, height, options );\n\n\tthis.samples = 4;\n\n}\n\nWebGLMultisampleRenderTarget.prototype = Object.assign( Object.create( WebGLRenderTarget.prototype ), {\n\n\tconstructor: WebGLMultisampleRenderTarget,\n\n\tisWebGLMultisampleRenderTarget: true,\n\n\tcopy: function ( source ) {\n\n\t\tWebGLRenderTarget.prototype.copy.call( this, source );\n\n\t\tthis.samples = source.samples;\n\n\t\treturn this;\n\n\t}\n\n} );\n\n/**\n * @author alteredq / http://alteredqualia.com\n */\n\nfunction WebGLRenderTargetCube( width, height, options ) {\n\n\tWebGLRenderTarget.call( this, width, height, options );\n\n}\n\nWebGLRenderTargetCube.prototype = Object.create( WebGLRenderTarget.prototype );\nWebGLRenderTargetCube.prototype.constructor = WebGLRenderTargetCube;\n\nWebGLRenderTargetCube.prototype.isWebGLRenderTargetCube = true;\n\n/**\n * @author alteredq / http://alteredqualia.com/\n */\n\nfunction DataTexture( data, width, height, format, type, mapping, wrapS, wrapT, magFilter, minFilter, anisotropy, encoding ) {\n\n\tTexture.call( this, null, mapping, wrapS, wrapT, magFilter, minFilter, format, type, anisotropy, encoding );\n\n\tthis.image = { data: data, width: width, height: height };\n\n\tthis.magFilter = magFilter !== undefined ? magFilter : NearestFilter;\n\tthis.minFilter = minFilter !== undefined ? minFilter : NearestFilter;\n\n\tthis.generateMipmaps = false;\n\tthis.flipY = false;\n\tthis.unpackAlignment = 1;\n\n}\n\nDataTexture.prototype = Object.create( Texture.prototype );\nDataTexture.prototype.constructor = DataTexture;\n\nDataTexture.prototype.isDataTexture = true;\n\n/**\n * @author bhouston / http://clara.io\n * @author WestLangley / http://github.com/WestLangley\n */\n\nfunction Box3( min, max ) {\n\n\tthis.min = ( min !== undefined ) ? min : new Vector3( + Infinity, + Infinity, + Infinity );\n\tthis.max = ( max !== undefined ) ? max : new Vector3( - Infinity, - Infinity, - Infinity );\n\n}\n\nObject.assign( Box3.prototype, {\n\n\tisBox3: true,\n\n\tset: function ( min, max ) {\n\n\t\tthis.min.copy( min );\n\t\tthis.max.copy( max );\n\n\t\treturn this;\n\n\t},\n\n\tsetFromArray: function ( array ) {\n\n\t\tvar minX = + Infinity;\n\t\tvar minY = + Infinity;\n\t\tvar minZ = + Infinity;\n\n\t\tvar maxX = - Infinity;\n\t\tvar maxY = - Infinity;\n\t\tvar maxZ = - Infinity;\n\n\t\tfor ( var i = 0, l = array.length; i < l; i += 3 ) {\n\n\t\t\tvar x = array[ i ];\n\t\t\tvar y = array[ i + 1 ];\n\t\t\tvar z = array[ i + 2 ];\n\n\t\t\tif ( x < minX ) minX = x;\n\t\t\tif ( y < minY ) minY = y;\n\t\t\tif ( z < minZ ) minZ = z;\n\n\t\t\tif ( x > maxX ) maxX = x;\n\t\t\tif ( y > maxY ) maxY = y;\n\t\t\tif ( z > maxZ ) maxZ = z;\n\n\t\t}\n\n\t\tthis.min.set( minX, minY, minZ );\n\t\tthis.max.set( maxX, maxY, maxZ );\n\n\t\treturn this;\n\n\t},\n\n\tsetFromBufferAttribute: function ( attribute ) {\n\n\t\tvar minX = + Infinity;\n\t\tvar minY = + Infinity;\n\t\tvar minZ = + Infinity;\n\n\t\tvar maxX = - Infinity;\n\t\tvar maxY = - Infinity;\n\t\tvar maxZ = - Infinity;\n\n\t\tfor ( var i = 0, l = attribute.count; i < l; i ++ ) {\n\n\t\t\tvar x = attribute.getX( i );\n\t\t\tvar y = attribute.getY( i );\n\t\t\tvar z = attribute.getZ( i );\n\n\t\t\tif ( x < minX ) minX = x;\n\t\t\tif ( y < minY ) minY = y;\n\t\t\tif ( z < minZ ) minZ = z;\n\n\t\t\tif ( x > maxX ) maxX = x;\n\t\t\tif ( y > maxY ) maxY = y;\n\t\t\tif ( z > maxZ ) maxZ = z;\n\n\t\t}\n\n\t\tthis.min.set( minX, minY, minZ );\n\t\tthis.max.set( maxX, maxY, maxZ );\n\n\t\treturn this;\n\n\t},\n\n\tsetFromPoints: function ( points ) {\n\n\t\tthis.makeEmpty();\n\n\t\tfor ( var i = 0, il = points.length; i < il; i ++ ) {\n\n\t\t\tthis.expandByPoint( points[ i ] );\n\n\t\t}\n\n\t\treturn this;\n\n\t},\n\n\tsetFromCenterAndSize: function () {\n\n\t\tvar v1 = new Vector3();\n\n\t\treturn function setFromCenterAndSize( center, size ) {\n\n\t\t\tvar halfSize = v1.copy( size ).multiplyScalar( 0.5 );\n\n\t\t\tthis.min.copy( center ).sub( halfSize );\n\t\t\tthis.max.copy( center ).add( halfSize );\n\n\t\t\treturn this;\n\n\t\t};\n\n\t}(),\n\n\tsetFromObject: function ( object ) {\n\n\t\tthis.makeEmpty();\n\n\t\treturn this.expandByObject( object );\n\n\t},\n\n\tclone: function () {\n\n\t\treturn new this.constructor().copy( this );\n\n\t},\n\n\tcopy: function ( box ) {\n\n\t\tthis.min.copy( box.min );\n\t\tthis.max.copy( box.max );\n\n\t\treturn this;\n\n\t},\n\n\tmakeEmpty: function () {\n\n\t\tthis.min.x = this.min.y = this.min.z = + Infinity;\n\t\tthis.max.x = this.max.y = this.max.z = - Infinity;\n\n\t\treturn this;\n\n\t},\n\n\tisEmpty: function () {\n\n\t\t// this is a more robust check for empty than ( volume <= 0 ) because volume can get positive with two negative axes\n\n\t\treturn ( this.max.x < this.min.x ) || ( this.max.y < this.min.y ) || ( this.max.z < this.min.z );\n\n\t},\n\n\tgetCenter: function ( target ) {\n\n\t\tif ( target === undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Box3: .getCenter() target is now required' );\n\t\t\ttarget = new Vector3();\n\n\t\t}\n\n\t\treturn this.isEmpty() ? target.set( 0, 0, 0 ) : target.addVectors( this.min, this.max ).multiplyScalar( 0.5 );\n\n\t},\n\n\tgetSize: function ( target ) {\n\n\t\tif ( target === undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Box3: .getSize() target is now required' );\n\t\t\ttarget = new Vector3();\n\n\t\t}\n\n\t\treturn this.isEmpty() ? target.set( 0, 0, 0 ) : target.subVectors( this.max, this.min );\n\n\t},\n\n\texpandByPoint: function ( point ) {\n\n\t\tthis.min.min( point );\n\t\tthis.max.max( point );\n\n\t\treturn this;\n\n\t},\n\n\texpandByVector: function ( vector ) {\n\n\t\tthis.min.sub( vector );\n\t\tthis.max.add( vector );\n\n\t\treturn this;\n\n\t},\n\n\texpandByScalar: function ( scalar ) {\n\n\t\tthis.min.addScalar( - scalar );\n\t\tthis.max.addScalar( scalar );\n\n\t\treturn this;\n\n\t},\n\n\texpandByObject: function () {\n\n\t\t// Computes the world-axis-aligned bounding box of an object (including its children),\n\t\t// accounting for both the object's, and children's, world transforms\n\n\t\tvar scope, i, l;\n\n\t\tvar v1 = new Vector3();\n\n\t\tfunction traverse( node ) {\n\n\t\t\tvar geometry = node.geometry;\n\n\t\t\tif ( geometry !== undefined ) {\n\n\t\t\t\tif ( geometry.isGeometry ) {\n\n\t\t\t\t\tvar vertices = geometry.vertices;\n\n\t\t\t\t\tfor ( i = 0, l = vertices.length; i < l; i ++ ) {\n\n\t\t\t\t\t\tv1.copy( vertices[ i ] );\n\t\t\t\t\t\tv1.applyMatrix4( node.matrixWorld );\n\n\t\t\t\t\t\tscope.expandByPoint( v1 );\n\n\t\t\t\t\t}\n\n\t\t\t\t} else if ( geometry.isBufferGeometry ) {\n\n\t\t\t\t\tvar attribute = geometry.attributes.position;\n\n\t\t\t\t\tif ( attribute !== undefined ) {\n\n\t\t\t\t\t\tfor ( i = 0, l = attribute.count; i < l; i ++ ) {\n\n\t\t\t\t\t\t\tv1.fromBufferAttribute( attribute, i ).applyMatrix4( node.matrixWorld );\n\n\t\t\t\t\t\t\tscope.expandByPoint( v1 );\n\n\t\t\t\t\t\t}\n\n\t\t\t\t\t}\n\n\t\t\t\t}\n\n\t\t\t}\n\n\t\t}\n\n\t\treturn function expandByObject( object ) {\n\n\t\t\tscope = this;\n\n\t\t\tobject.updateMatrixWorld( true );\n\n\t\t\tobject.traverse( traverse );\n\n\t\t\treturn this;\n\n\t\t};\n\n\t}(),\n\n\tcontainsPoint: function ( point ) {\n\n\t\treturn point.x < this.min.x || point.x > this.max.x ||\n\t\t\tpoint.y < this.min.y || point.y > this.max.y ||\n\t\t\tpoint.z < this.min.z || point.z > this.max.z ? false : true;\n\n\t},\n\n\tcontainsBox: function ( box ) {\n\n\t\treturn this.min.x <= box.min.x && box.max.x <= this.max.x &&\n\t\t\tthis.min.y <= box.min.y && box.max.y <= this.max.y &&\n\t\t\tthis.min.z <= box.min.z && box.max.z <= this.max.z;\n\n\t},\n\n\tgetParameter: function ( point, target ) {\n\n\t\t// This can potentially have a divide by zero if the box\n\t\t// has a size dimension of 0.\n\n\t\tif ( target === undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Box3: .getParameter() target is now required' );\n\t\t\ttarget = new Vector3();\n\n\t\t}\n\n\t\treturn target.set(\n\t\t\t( point.x - this.min.x ) / ( this.max.x - this.min.x ),\n\t\t\t( point.y - this.min.y ) / ( this.max.y - this.min.y ),\n\t\t\t( point.z - this.min.z ) / ( this.max.z - this.min.z )\n\t\t);\n\n\t},\n\n\tintersectsBox: function ( box ) {\n\n\t\t// using 6 splitting planes to rule out intersections.\n\t\treturn box.max.x < this.min.x || box.min.x > this.max.x ||\n\t\t\tbox.max.y < this.min.y || box.min.y > this.max.y ||\n\t\t\tbox.max.z < this.min.z || box.min.z > this.max.z ? false : true;\n\n\t},\n\n\tintersectsSphere: ( function () {\n\n\t\tvar closestPoint = new Vector3();\n\n\t\treturn function intersectsSphere( sphere ) {\n\n\t\t\t// Find the point on the AABB closest to the sphere center.\n\t\t\tthis.clampPoint( sphere.center, closestPoint );\n\n\t\t\t// If that point is inside the sphere, the AABB and sphere intersect.\n\t\t\treturn closestPoint.distanceToSquared( sphere.center ) <= ( sphere.radius * sphere.radius );\n\n\t\t};\n\n\t} )(),\n\n\tintersectsPlane: function ( plane ) {\n\n\t\t// We compute the minimum and maximum dot product values. If those values\n\t\t// are on the same side (back or front) of the plane, then there is no intersection.\n\n\t\tvar min, max;\n\n\t\tif ( plane.normal.x > 0 ) {\n\n\t\t\tmin = plane.normal.x * this.min.x;\n\t\t\tmax = plane.normal.x * this.max.x;\n\n\t\t} else {\n\n\t\t\tmin = plane.normal.x * this.max.x;\n\t\t\tmax = plane.normal.x * this.min.x;\n\n\t\t}\n\n\t\tif ( plane.normal.y > 0 ) {\n\n\t\t\tmin += plane.normal.y * this.min.y;\n\t\t\tmax += plane.normal.y * this.max.y;\n\n\t\t} else {\n\n\t\t\tmin += plane.normal.y * this.max.y;\n\t\t\tmax += plane.normal.y * this.min.y;\n\n\t\t}\n\n\t\tif ( plane.normal.z > 0 ) {\n\n\t\t\tmin += plane.normal.z * this.min.z;\n\t\t\tmax += plane.normal.z * this.max.z;\n\n\t\t} else {\n\n\t\t\tmin += plane.normal.z * this.max.z;\n\t\t\tmax += plane.normal.z * this.min.z;\n\n\t\t}\n\n\t\treturn ( min <= - plane.constant && max >= - plane.constant );\n\n\t},\n\n\tintersectsTriangle: ( function () {\n\n\t\t// triangle centered vertices\n\t\tvar v0 = new Vector3();\n\t\tvar v1 = new Vector3();\n\t\tvar v2 = new Vector3();\n\n\t\t// triangle edge vectors\n\t\tvar f0 = new Vector3();\n\t\tvar f1 = new Vector3();\n\t\tvar f2 = new Vector3();\n\n\t\tvar testAxis = new Vector3();\n\n\t\tvar center = new Vector3();\n\t\tvar extents = new Vector3();\n\n\t\tvar triangleNormal = new Vector3();\n\n\t\tfunction satForAxes( axes ) {\n\n\t\t\tvar i, j;\n\n\t\t\tfor ( i = 0, j = axes.length - 3; i <= j; i += 3 ) {\n\n\t\t\t\ttestAxis.fromArray( axes, i );\n\t\t\t\t// project the aabb onto the seperating axis\n\t\t\t\tvar r = extents.x * Math.abs( testAxis.x ) + extents.y * Math.abs( testAxis.y ) + extents.z * Math.abs( testAxis.z );\n\t\t\t\t// project all 3 vertices of the triangle onto the seperating axis\n\t\t\t\tvar p0 = v0.dot( testAxis );\n\t\t\t\tvar p1 = v1.dot( testAxis );\n\t\t\t\tvar p2 = v2.dot( testAxis );\n\t\t\t\t// actual test, basically see if either of the most extreme of the triangle points intersects r\n\t\t\t\tif ( Math.max( - Math.max( p0, p1, p2 ), Math.min( p0, p1, p2 ) ) > r ) {\n\n\t\t\t\t\t// points of the projected triangle are outside the projected half-length of the aabb\n\t\t\t\t\t// the axis is seperating and we can exit\n\t\t\t\t\treturn false;\n\n\t\t\t\t}\n\n\t\t\t}\n\n\t\t\treturn true;\n\n\t\t}\n\n\t\treturn function intersectsTriangle( triangle ) {\n\n\t\t\tif ( this.isEmpty() ) {\n\n\t\t\t\treturn false;\n\n\t\t\t}\n\n\t\t\t// compute box center and extents\n\t\t\tthis.getCenter( center );\n\t\t\textents.subVectors( this.max, center );\n\n\t\t\t// translate triangle to aabb origin\n\t\t\tv0.subVectors( triangle.a, center );\n\t\t\tv1.subVectors( triangle.b, center );\n\t\t\tv2.subVectors( triangle.c, center );\n\n\t\t\t// compute edge vectors for triangle\n\t\t\tf0.subVectors( v1, v0 );\n\t\t\tf1.subVectors( v2, v1 );\n\t\t\tf2.subVectors( v0, v2 );\n\n\t\t\t// test against axes that are given by cross product combinations of the edges of the triangle and the edges of the aabb\n\t\t\t// make an axis testing of each of the 3 sides of the aabb against each of the 3 sides of the triangle = 9 axis of separation\n\t\t\t// axis_ij = u_i x f_j (u0, u1, u2 = face normals of aabb = x,y,z axes vectors since aabb is axis aligned)\n\t\t\tvar axes = [\n\t\t\t\t0, - f0.z, f0.y, 0, - f1.z, f1.y, 0, - f2.z, f2.y,\n\t\t\t\tf0.z, 0, - f0.x, f1.z, 0, - f1.x, f2.z, 0, - f2.x,\n\t\t\t\t- f0.y, f0.x, 0, - f1.y, f1.x, 0, - f2.y, f2.x, 0\n\t\t\t];\n\t\t\tif ( ! satForAxes( axes ) ) {\n\n\t\t\t\treturn false;\n\n\t\t\t}\n\n\t\t\t// test 3 face normals from the aabb\n\t\t\taxes = [ 1, 0, 0, 0, 1, 0, 0, 0, 1 ];\n\t\t\tif ( ! satForAxes( axes ) ) {\n\n\t\t\t\treturn false;\n\n\t\t\t}\n\n\t\t\t// finally testing the face normal of the triangle\n\t\t\t// use already existing triangle edge vectors here\n\t\t\ttriangleNormal.crossVectors( f0, f1 );\n\t\t\taxes = [ triangleNormal.x, triangleNormal.y, triangleNormal.z ];\n\t\t\treturn satForAxes( axes );\n\n\t\t};\n\n\t} )(),\n\n\tclampPoint: function ( point, target ) {\n\n\t\tif ( target === undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Box3: .clampPoint() target is now required' );\n\t\t\ttarget = new Vector3();\n\n\t\t}\n\n\t\treturn target.copy( point ).clamp( this.min, this.max );\n\n\t},\n\n\tdistanceToPoint: function () {\n\n\t\tvar v1 = new Vector3();\n\n\t\treturn function distanceToPoint( point ) {\n\n\t\t\tvar clampedPoint = v1.copy( point ).clamp( this.min, this.max );\n\t\t\treturn clampedPoint.sub( point ).length();\n\n\t\t};\n\n\t}(),\n\n\tgetBoundingSphere: function () {\n\n\t\tvar v1 = new Vector3();\n\n\t\treturn function getBoundingSphere( target ) {\n\n\t\t\tif ( target === undefined ) {\n\n\t\t\t\tconsole.error( 'THREE.Box3: .getBoundingSphere() target is now required' );\n\t\t\t\t//target = new Sphere(); // removed to avoid cyclic dependency\n\n\t\t\t}\n\n\t\t\tthis.getCenter( target.center );\n\n\t\t\ttarget.radius = this.getSize( v1 ).length() * 0.5;\n\n\t\t\treturn target;\n\n\t\t};\n\n\t}(),\n\n\tintersect: function ( box ) {\n\n\t\tthis.min.max( box.min );\n\t\tthis.max.min( box.max );\n\n\t\t// ensure that if there is no overlap, the result is fully empty, not slightly empty with non-inf/+inf values that will cause subsequence intersects to erroneously return valid values.\n\t\tif ( this.isEmpty() ) this.makeEmpty();\n\n\t\treturn this;\n\n\t},\n\n\tunion: function ( box ) {\n\n\t\tthis.min.min( box.min );\n\t\tthis.max.max( box.max );\n\n\t\treturn this;\n\n\t},\n\n\tapplyMatrix4: function () {\n\n\t\tvar points = [\n\t\t\tnew Vector3(),\n\t\t\tnew Vector3(),\n\t\t\tnew Vector3(),\n\t\t\tnew Vector3(),\n\t\t\tnew Vector3(),\n\t\t\tnew Vector3(),\n\t\t\tnew Vector3(),\n\t\t\tnew Vector3()\n\t\t];\n\n\t\treturn function applyMatrix4( matrix ) {\n\n\t\t\t// transform of empty box is an empty box.\n\t\t\tif ( this.isEmpty() ) return this;\n\n\t\t\t// NOTE: I am using a binary pattern to specify all 2^3 combinations below\n\t\t\tpoints[ 0 ].set( this.min.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 000\n\t\t\tpoints[ 1 ].set( this.min.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 001\n\t\t\tpoints[ 2 ].set( this.min.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 010\n\t\t\tpoints[ 3 ].set( this.min.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 011\n\t\t\tpoints[ 4 ].set( this.max.x, this.min.y, this.min.z ).applyMatrix4( matrix ); // 100\n\t\t\tpoints[ 5 ].set( this.max.x, this.min.y, this.max.z ).applyMatrix4( matrix ); // 101\n\t\t\tpoints[ 6 ].set( this.max.x, this.max.y, this.min.z ).applyMatrix4( matrix ); // 110\n\t\t\tpoints[ 7 ].set( this.max.x, this.max.y, this.max.z ).applyMatrix4( matrix ); // 111\n\n\t\t\tthis.setFromPoints( points );\n\n\t\t\treturn this;\n\n\t\t};\n\n\t}(),\n\n\ttranslate: function ( offset ) {\n\n\t\tthis.min.add( offset );\n\t\tthis.max.add( offset );\n\n\t\treturn this;\n\n\t},\n\n\tequals: function ( box ) {\n\n\t\treturn box.min.equals( this.min ) && box.max.equals( this.max );\n\n\t}\n\n} );\n\n/**\n * @author bhouston / http://clara.io\n * @author mrdoob / http://mrdoob.com/\n */\n\nfunction Sphere( center, radius ) {\n\n\tthis.center = ( center !== undefined ) ? center : new Vector3();\n\tthis.radius = ( radius !== undefined ) ? radius : 0;\n\n}\n\nObject.assign( Sphere.prototype, {\n\n\tset: function ( center, radius ) {\n\n\t\tthis.center.copy( center );\n\t\tthis.radius = radius;\n\n\t\treturn this;\n\n\t},\n\n\tsetFromPoints: function () {\n\n\t\tvar box = new Box3();\n\n\t\treturn function setFromPoints( points, optionalCenter ) {\n\n\t\t\tvar center = this.center;\n\n\t\t\tif ( optionalCenter !== undefined ) {\n\n\t\t\t\tcenter.copy( optionalCenter );\n\n\t\t\t} else {\n\n\t\t\t\tbox.setFromPoints( points ).getCenter( center );\n\n\t\t\t}\n\n\t\t\tvar maxRadiusSq = 0;\n\n\t\t\tfor ( var i = 0, il = points.length; i < il; i ++ ) {\n\n\t\t\t\tmaxRadiusSq = Math.max( maxRadiusSq, center.distanceToSquared( points[ i ] ) );\n\n\t\t\t}\n\n\t\t\tthis.radius = Math.sqrt( maxRadiusSq );\n\n\t\t\treturn this;\n\n\t\t};\n\n\t}(),\n\n\tclone: function () {\n\n\t\treturn new this.constructor().copy( this );\n\n\t},\n\n\tcopy: function ( sphere ) {\n\n\t\tthis.center.copy( sphere.center );\n\t\tthis.radius = sphere.radius;\n\n\t\treturn this;\n\n\t},\n\n\tempty: function () {\n\n\t\treturn ( this.radius <= 0 );\n\n\t},\n\n\tcontainsPoint: function ( point ) {\n\n\t\treturn ( point.distanceToSquared( this.center ) <= ( this.radius * this.radius ) );\n\n\t},\n\n\tdistanceToPoint: function ( point ) {\n\n\t\treturn ( point.distanceTo( this.center ) - this.radius );\n\n\t},\n\n\tintersectsSphere: function ( sphere ) {\n\n\t\tvar radiusSum = this.radius + sphere.radius;\n\n\t\treturn sphere.center.distanceToSquared( this.center ) <= ( radiusSum * radiusSum );\n\n\t},\n\n\tintersectsBox: function ( box ) {\n\n\t\treturn box.intersectsSphere( this );\n\n\t},\n\n\tintersectsPlane: function ( plane ) {\n\n\t\treturn Math.abs( plane.distanceToPoint( this.center ) ) <= this.radius;\n\n\t},\n\n\tclampPoint: function ( point, target ) {\n\n\t\tvar deltaLengthSq = this.center.distanceToSquared( point );\n\n\t\tif ( target === undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Sphere: .clampPoint() target is now required' );\n\t\t\ttarget = new Vector3();\n\n\t\t}\n\n\t\ttarget.copy( point );\n\n\t\tif ( deltaLengthSq > ( this.radius * this.radius ) ) {\n\n\t\t\ttarget.sub( this.center ).normalize();\n\t\t\ttarget.multiplyScalar( this.radius ).add( this.center );\n\n\t\t}\n\n\t\treturn target;\n\n\t},\n\n\tgetBoundingBox: function ( target ) {\n\n\t\tif ( target === undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Sphere: .getBoundingBox() target is now required' );\n\t\t\ttarget = new Box3();\n\n\t\t}\n\n\t\ttarget.set( this.center, this.center );\n\t\ttarget.expandByScalar( this.radius );\n\n\t\treturn target;\n\n\t},\n\n\tapplyMatrix4: function ( matrix ) {\n\n\t\tthis.center.applyMatrix4( matrix );\n\t\tthis.radius = this.radius * matrix.getMaxScaleOnAxis();\n\n\t\treturn this;\n\n\t},\n\n\ttranslate: function ( offset ) {\n\n\t\tthis.center.add( offset );\n\n\t\treturn this;\n\n\t},\n\n\tequals: function ( sphere ) {\n\n\t\treturn sphere.center.equals( this.center ) && ( sphere.radius === this.radius );\n\n\t}\n\n} );\n\n/**\n * @author bhouston / http://clara.io\n */\n\nfunction Plane( normal, constant ) {\n\n\t// normal is assumed to be normalized\n\n\tthis.normal = ( normal !== undefined ) ? normal : new Vector3( 1, 0, 0 );\n\tthis.constant = ( constant !== undefined ) ? constant : 0;\n\n}\n\nObject.assign( Plane.prototype, {\n\n\tset: function ( normal, constant ) {\n\n\t\tthis.normal.copy( normal );\n\t\tthis.constant = constant;\n\n\t\treturn this;\n\n\t},\n\n\tsetComponents: function ( x, y, z, w ) {\n\n\t\tthis.normal.set( x, y, z );\n\t\tthis.constant = w;\n\n\t\treturn this;\n\n\t},\n\n\tsetFromNormalAndCoplanarPoint: function ( normal, point ) {\n\n\t\tthis.normal.copy( normal );\n\t\tthis.constant = - point.dot( this.normal );\n\n\t\treturn this;\n\n\t},\n\n\tsetFromCoplanarPoints: function () {\n\n\t\tvar v1 = new Vector3();\n\t\tvar v2 = new Vector3();\n\n\t\treturn function setFromCoplanarPoints( a, b, c ) {\n\n\t\t\tvar normal = v1.subVectors( c, b ).cross( v2.subVectors( a, b ) ).normalize();\n\n\t\t\t// Q: should an error be thrown if normal is zero (e.g. degenerate plane)?\n\n\t\t\tthis.setFromNormalAndCoplanarPoint( normal, a );\n\n\t\t\treturn this;\n\n\t\t};\n\n\t}(),\n\n\tclone: function () {\n\n\t\treturn new this.constructor().copy( this );\n\n\t},\n\n\tcopy: function ( plane ) {\n\n\t\tthis.normal.copy( plane.normal );\n\t\tthis.constant = plane.constant;\n\n\t\treturn this;\n\n\t},\n\n\tnormalize: function () {\n\n\t\t// Note: will lead to a divide by zero if the plane is invalid.\n\n\t\tvar inverseNormalLength = 1.0 / this.normal.length();\n\t\tthis.normal.multiplyScalar( inverseNormalLength );\n\t\tthis.constant *= inverseNormalLength;\n\n\t\treturn this;\n\n\t},\n\n\tnegate: function () {\n\n\t\tthis.constant *= - 1;\n\t\tthis.normal.negate();\n\n\t\treturn this;\n\n\t},\n\n\tdistanceToPoint: function ( point ) {\n\n\t\treturn this.normal.dot( point ) + this.constant;\n\n\t},\n\n\tdistanceToSphere: function ( sphere ) {\n\n\t\treturn this.distanceToPoint( sphere.center ) - sphere.radius;\n\n\t},\n\n\tprojectPoint: function ( point, target ) {\n\n\t\tif ( target === undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Plane: .projectPoint() target is now required' );\n\t\t\ttarget = new Vector3();\n\n\t\t}\n\n\t\treturn target.copy( this.normal ).multiplyScalar( - this.distanceToPoint( point ) ).add( point );\n\n\t},\n\n\tintersectLine: function () {\n\n\t\tvar v1 = new Vector3();\n\n\t\treturn function intersectLine( line, target ) {\n\n\t\t\tif ( target === undefined ) {\n\n\t\t\t\tconsole.warn( 'THREE.Plane: .intersectLine() target is now required' );\n\t\t\t\ttarget = new Vector3();\n\n\t\t\t}\n\n\t\t\tvar direction = line.delta( v1 );\n\n\t\t\tvar denominator = this.normal.dot( direction );\n\n\t\t\tif ( denominator === 0 ) {\n\n\t\t\t\t// line is coplanar, return origin\n\t\t\t\tif ( this.distanceToPoint( line.start ) === 0 ) {\n\n\t\t\t\t\treturn target.copy( line.start );\n\n\t\t\t\t}\n\n\t\t\t\t// Unsure if this is the correct method to handle this case.\n\t\t\t\treturn undefined;\n\n\t\t\t}\n\n\t\t\tvar t = - ( line.start.dot( this.normal ) + this.constant ) / denominator;\n\n\t\t\tif ( t < 0 || t > 1 ) {\n\n\t\t\t\treturn undefined;\n\n\t\t\t}\n\n\t\t\treturn target.copy( direction ).multiplyScalar( t ).add( line.start );\n\n\t\t};\n\n\t}(),\n\n\tintersectsLine: function ( line ) {\n\n\t\t// Note: this tests if a line intersects the plane, not whether it (or its end-points) are coplanar with it.\n\n\t\tvar startSign = this.distanceToPoint( line.start );\n\t\tvar endSign = this.distanceToPoint( line.end );\n\n\t\treturn ( startSign < 0 && endSign > 0 ) || ( endSign < 0 && startSign > 0 );\n\n\t},\n\n\tintersectsBox: function ( box ) {\n\n\t\treturn box.intersectsPlane( this );\n\n\t},\n\n\tintersectsSphere: function ( sphere ) {\n\n\t\treturn sphere.intersectsPlane( this );\n\n\t},\n\n\tcoplanarPoint: function ( target ) {\n\n\t\tif ( target === undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Plane: .coplanarPoint() target is now required' );\n\t\t\ttarget = new Vector3();\n\n\t\t}\n\n\t\treturn target.copy( this.normal ).multiplyScalar( - this.constant );\n\n\t},\n\n\tapplyMatrix4: function () {\n\n\t\tvar v1 = new Vector3();\n\t\tvar m1 = new Matrix3();\n\n\t\treturn function applyMatrix4( matrix, optionalNormalMatrix ) {\n\n\t\t\tvar normalMatrix = optionalNormalMatrix || m1.getNormalMatrix( matrix );\n\n\t\t\tvar referencePoint = this.coplanarPoint( v1 ).applyMatrix4( matrix );\n\n\t\t\tvar normal = this.normal.applyMatrix3( normalMatrix ).normalize();\n\n\t\t\tthis.constant = - referencePoint.dot( normal );\n\n\t\t\treturn this;\n\n\t\t};\n\n\t}(),\n\n\ttranslate: function ( offset ) {\n\n\t\tthis.constant -= offset.dot( this.normal );\n\n\t\treturn this;\n\n\t},\n\n\tequals: function ( plane ) {\n\n\t\treturn plane.normal.equals( this.normal ) && ( plane.constant === this.constant );\n\n\t}\n\n} );\n\n/**\n * @author mrdoob / http://mrdoob.com/\n * @author alteredq / http://alteredqualia.com/\n * @author bhouston / http://clara.io\n */\n\nfunction Frustum( p0, p1, p2, p3, p4, p5 ) {\n\n\tthis.planes = [\n\n\t\t( p0 !== undefined ) ? p0 : new Plane(),\n\t\t( p1 !== undefined ) ? p1 : new Plane(),\n\t\t( p2 !== undefined ) ? p2 : new Plane(),\n\t\t( p3 !== undefined ) ? p3 : new Plane(),\n\t\t( p4 !== undefined ) ? p4 : new Plane(),\n\t\t( p5 !== undefined ) ? p5 : new Plane()\n\n\t];\n\n}\n\nObject.assign( Frustum.prototype, {\n\n\tset: function ( p0, p1, p2, p3, p4, p5 ) {\n\n\t\tvar planes = this.planes;\n\n\t\tplanes[ 0 ].copy( p0 );\n\t\tplanes[ 1 ].copy( p1 );\n\t\tplanes[ 2 ].copy( p2 );\n\t\tplanes[ 3 ].copy( p3 );\n\t\tplanes[ 4 ].copy( p4 );\n\t\tplanes[ 5 ].copy( p5 );\n\n\t\treturn this;\n\n\t},\n\n\tclone: function () {\n\n\t\treturn new this.constructor().copy( this );\n\n\t},\n\n\tcopy: function ( frustum ) {\n\n\t\tvar planes = this.planes;\n\n\t\tfor ( var i = 0; i < 6; i ++ ) {\n\n\t\t\tplanes[ i ].copy( frustum.planes[ i ] );\n\n\t\t}\n\n\t\treturn this;\n\n\t},\n\n\tsetFromMatrix: function ( m ) {\n\n\t\tvar planes = this.planes;\n\t\tvar me = m.elements;\n\t\tvar me0 = me[ 0 ], me1 = me[ 1 ], me2 = me[ 2 ], me3 = me[ 3 ];\n\t\tvar me4 = me[ 4 ], me5 = me[ 5 ], me6 = me[ 6 ], me7 = me[ 7 ];\n\t\tvar me8 = me[ 8 ], me9 = me[ 9 ], me10 = me[ 10 ], me11 = me[ 11 ];\n\t\tvar me12 = me[ 12 ], me13 = me[ 13 ], me14 = me[ 14 ], me15 = me[ 15 ];\n\n\t\tplanes[ 0 ].setComponents( me3 - me0, me7 - me4, me11 - me8, me15 - me12 ).normalize();\n\t\tplanes[ 1 ].setComponents( me3 + me0, me7 + me4, me11 + me8, me15 + me12 ).normalize();\n\t\tplanes[ 2 ].setComponents( me3 + me1, me7 + me5, me11 + me9, me15 + me13 ).normalize();\n\t\tplanes[ 3 ].setComponents( me3 - me1, me7 - me5, me11 - me9, me15 - me13 ).normalize();\n\t\tplanes[ 4 ].setComponents( me3 - me2, me7 - me6, me11 - me10, me15 - me14 ).normalize();\n\t\tplanes[ 5 ].setComponents( me3 + me2, me7 + me6, me11 + me10, me15 + me14 ).normalize();\n\n\t\treturn this;\n\n\t},\n\n\tintersectsObject: function () {\n\n\t\tvar sphere = new Sphere();\n\n\t\treturn function intersectsObject( object ) {\n\n\t\t\tvar geometry = object.geometry;\n\n\t\t\tif ( geometry.boundingSphere === null )\n\t\t\t\tgeometry.computeBoundingSphere();\n\n\t\t\tsphere.copy( geometry.boundingSphere )\n\t\t\t\t.applyMatrix4( object.matrixWorld );\n\n\t\t\treturn this.intersectsSphere( sphere );\n\n\t\t};\n\n\t}(),\n\n\tintersectsSprite: function () {\n\n\t\tvar sphere = new Sphere();\n\n\t\treturn function intersectsSprite( sprite ) {\n\n\t\t\tsphere.center.set( 0, 0, 0 );\n\t\t\tsphere.radius = 0.7071067811865476;\n\t\t\tsphere.applyMatrix4( sprite.matrixWorld );\n\n\t\t\treturn this.intersectsSphere( sphere );\n\n\t\t};\n\n\t}(),\n\n\tintersectsSphere: function ( sphere ) {\n\n\t\tvar planes = this.planes;\n\t\tvar center = sphere.center;\n\t\tvar negRadius = - sphere.radius;\n\n\t\tfor ( var i = 0; i < 6; i ++ ) {\n\n\t\t\tvar distance = planes[ i ].distanceToPoint( center );\n\n\t\t\tif ( distance < negRadius ) {\n\n\t\t\t\treturn false;\n\n\t\t\t}\n\n\t\t}\n\n\t\treturn true;\n\n\t},\n\n\tintersectsBox: function () {\n\n\t\tvar p = new Vector3();\n\n\t\treturn function intersectsBox( box ) {\n\n\t\t\tvar planes = this.planes;\n\n\t\t\tfor ( var i = 0; i < 6; i ++ ) {\n\n\t\t\t\tvar plane = planes[ i ];\n\n\t\t\t\t// corner at max distance\n\n\t\t\t\tp.x = plane.normal.x > 0 ? box.max.x : box.min.x;\n\t\t\t\tp.y = plane.normal.y > 0 ? box.max.y : box.min.y;\n\t\t\t\tp.z = plane.normal.z > 0 ? box.max.z : box.min.z;\n\n\t\t\t\tif ( plane.distanceToPoint( p ) < 0 ) {\n\n\t\t\t\t\treturn false;\n\n\t\t\t\t}\n\n\t\t\t}\n\n\t\t\treturn true;\n\n\t\t};\n\n\t}(),\n\n\tcontainsPoint: function ( point ) {\n\n\t\tvar planes = this.planes;\n\n\t\tfor ( var i = 0; i < 6; i ++ ) {\n\n\t\t\tif ( planes[ i ].distanceToPoint( point ) < 0 ) {\n\n\t\t\t\treturn false;\n\n\t\t\t}\n\n\t\t}\n\n\t\treturn true;\n\n\t}\n\n} );\n\n/**\n * @author mrdoob / http://mrdoob.com/\n * @author supereggbert / http://www.paulbrunt.co.uk/\n * @author philogb / http://blog.thejit.org/\n * @author jordi_ros / http://plattsoft.com\n * @author D1plo1d / http://github.com/D1plo1d\n * @author alteredq / http://alteredqualia.com/\n * @author mikael emtinger / http://gomo.se/\n * @author timknip / http://www.floorplanner.com/\n * @author bhouston / http://clara.io\n * @author WestLangley / http://github.com/WestLangley\n */\n\nfunction Matrix4() {\n\n\tthis.elements = [\n\n\t\t1, 0, 0, 0,\n\t\t0, 1, 0, 0,\n\t\t0, 0, 1, 0,\n\t\t0, 0, 0, 1\n\n\t];\n\n\tif ( arguments.length > 0 ) {\n\n\t\tconsole.error( 'THREE.Matrix4: the constructor no longer reads arguments. use .set() instead.' );\n\n\t}\n\n}\n\nObject.assign( Matrix4.prototype, {\n\n\tisMatrix4: true,\n\n\tset: function ( n11, n12, n13, n14, n21, n22, n23, n24, n31, n32, n33, n34, n41, n42, n43, n44 ) {\n\n\t\tvar te = this.elements;\n\n\t\tte[ 0 ] = n11; te[ 4 ] = n12; te[ 8 ] = n13; te[ 12 ] = n14;\n\t\tte[ 1 ] = n21; te[ 5 ] = n22; te[ 9 ] = n23; te[ 13 ] = n24;\n\t\tte[ 2 ] = n31; te[ 6 ] = n32; te[ 10 ] = n33; te[ 14 ] = n34;\n\t\tte[ 3 ] = n41; te[ 7 ] = n42; te[ 11 ] = n43; te[ 15 ] = n44;\n\n\t\treturn this;\n\n\t},\n\n\tidentity: function () {\n\n\t\tthis.set(\n\n\t\t\t1, 0, 0, 0,\n\t\t\t0, 1, 0, 0,\n\t\t\t0, 0, 1, 0,\n\t\t\t0, 0, 0, 1\n\n\t\t);\n\n\t\treturn this;\n\n\t},\n\n\tclone: function () {\n\n\t\treturn new Matrix4().fromArray( this.elements );\n\n\t},\n\n\tcopy: function ( m ) {\n\n\t\tvar te = this.elements;\n\t\tvar me = m.elements;\n\n\t\tte[ 0 ] = me[ 0 ]; te[ 1 ] = me[ 1 ]; te[ 2 ] = me[ 2 ]; te[ 3 ] = me[ 3 ];\n\t\tte[ 4 ] = me[ 4 ]; te[ 5 ] = me[ 5 ]; te[ 6 ] = me[ 6 ]; te[ 7 ] = me[ 7 ];\n\t\tte[ 8 ] = me[ 8 ]; te[ 9 ] = me[ 9 ]; te[ 10 ] = me[ 10 ]; te[ 11 ] = me[ 11 ];\n\t\tte[ 12 ] = me[ 12 ]; te[ 13 ] = me[ 13 ]; te[ 14 ] = me[ 14 ]; te[ 15 ] = me[ 15 ];\n\n\t\treturn this;\n\n\t},\n\n\tcopyPosition: function ( m ) {\n\n\t\tvar te = this.elements, me = m.elements;\n\n\t\tte[ 12 ] = me[ 12 ];\n\t\tte[ 13 ] = me[ 13 ];\n\t\tte[ 14 ] = me[ 14 ];\n\n\t\treturn this;\n\n\t},\n\n\textractBasis: function ( xAxis, yAxis, zAxis ) {\n\n\t\txAxis.setFromMatrixColumn( this, 0 );\n\t\tyAxis.setFromMatrixColumn( this, 1 );\n\t\tzAxis.setFromMatrixColumn( this, 2 );\n\n\t\treturn this;\n\n\t},\n\n\tmakeBasis: function ( xAxis, yAxis, zAxis ) {\n\n\t\tthis.set(\n\t\t\txAxis.x, yAxis.x, zAxis.x, 0,\n\t\t\txAxis.y, yAxis.y, zAxis.y, 0,\n\t\t\txAxis.z, yAxis.z, zAxis.z, 0,\n\t\t\t0, 0, 0, 1\n\t\t);\n\n\t\treturn this;\n\n\t},\n\n\textractRotation: function () {\n\n\t\tvar v1 = new Vector3();\n\n\t\treturn function extractRotation( m ) {\n\n\t\t\t// this method does not support reflection matrices\n\n\t\t\tvar te = this.elements;\n\t\t\tvar me = m.elements;\n\n\t\t\tvar scaleX = 1 / v1.setFromMatrixColumn( m, 0 ).length();\n\t\t\tvar scaleY = 1 / v1.setFromMatrixColumn( m, 1 ).length();\n\t\t\tvar scaleZ = 1 / v1.setFromMatrixColumn( m, 2 ).length();\n\n\t\t\tte[ 0 ] = me[ 0 ] * scaleX;\n\t\t\tte[ 1 ] = me[ 1 ] * scaleX;\n\t\t\tte[ 2 ] = me[ 2 ] * scaleX;\n\t\t\tte[ 3 ] = 0;\n\n\t\t\tte[ 4 ] = me[ 4 ] * scaleY;\n\t\t\tte[ 5 ] = me[ 5 ] * scaleY;\n\t\t\tte[ 6 ] = me[ 6 ] * scaleY;\n\t\t\tte[ 7 ] = 0;\n\n\t\t\tte[ 8 ] = me[ 8 ] * scaleZ;\n\t\t\tte[ 9 ] = me[ 9 ] * scaleZ;\n\t\t\tte[ 10 ] = me[ 10 ] * scaleZ;\n\t\t\tte[ 11 ] = 0;\n\n\t\t\tte[ 12 ] = 0;\n\t\t\tte[ 13 ] = 0;\n\t\t\tte[ 14 ] = 0;\n\t\t\tte[ 15 ] = 1;\n\n\t\t\treturn this;\n\n\t\t};\n\n\t}(),\n\n\tmakeRotationFromEuler: function ( euler ) {\n\n\t\tif ( ! ( euler && euler.isEuler ) ) {\n\n\t\t\tconsole.error( 'THREE.Matrix4: .makeRotationFromEuler() now expects a Euler rotation rather than a Vector3 and order.' );\n\n\t\t}\n\n\t\tvar te = this.elements;\n\n\t\tvar x = euler.x, y = euler.y, z = euler.z;\n\t\tvar a = Math.cos( x ), b = Math.sin( x );\n\t\tvar c = Math.cos( y ), d = Math.sin( y );\n\t\tvar e = Math.cos( z ), f = Math.sin( z );\n\n\t\tif ( euler.order === 'XYZ' ) {\n\n\t\t\tvar ae = a * e, af = a * f, be = b * e, bf = b * f;\n\n\t\t\tte[ 0 ] = c * e;\n\t\t\tte[ 4 ] = - c * f;\n\t\t\tte[ 8 ] = d;\n\n\t\t\tte[ 1 ] = af + be * d;\n\t\t\tte[ 5 ] = ae - bf * d;\n\t\t\tte[ 9 ] = - b * c;\n\n\t\t\tte[ 2 ] = bf - ae * d;\n\t\t\tte[ 6 ] = be + af * d;\n\t\t\tte[ 10 ] = a * c;\n\n\t\t} else if ( euler.order === 'YXZ' ) {\n\n\t\t\tvar ce = c * e, cf = c * f, de = d * e, df = d * f;\n\n\t\t\tte[ 0 ] = ce + df * b;\n\t\t\tte[ 4 ] = de * b - cf;\n\t\t\tte[ 8 ] = a * d;\n\n\t\t\tte[ 1 ] = a * f;\n\t\t\tte[ 5 ] = a * e;\n\t\t\tte[ 9 ] = - b;\n\n\t\t\tte[ 2 ] = cf * b - de;\n\t\t\tte[ 6 ] = df + ce * b;\n\t\t\tte[ 10 ] = a * c;\n\n\t\t} else if ( euler.order === 'ZXY' ) {\n\n\t\t\tvar ce = c * e, cf = c * f, de = d * e, df = d * f;\n\n\t\t\tte[ 0 ] = ce - df * b;\n\t\t\tte[ 4 ] = - a * f;\n\t\t\tte[ 8 ] = de + cf * b;\n\n\t\t\tte[ 1 ] = cf + de * b;\n\t\t\tte[ 5 ] = a * e;\n\t\t\tte[ 9 ] = df - ce * b;\n\n\t\t\tte[ 2 ] = - a * d;\n\t\t\tte[ 6 ] = b;\n\t\t\tte[ 10 ] = a * c;\n\n\t\t} else if ( euler.order === 'ZYX' ) {\n\n\t\t\tvar ae = a * e, af = a * f, be = b * e, bf = b * f;\n\n\t\t\tte[ 0 ] = c * e;\n\t\t\tte[ 4 ] = be * d - af;\n\t\t\tte[ 8 ] = ae * d + bf;\n\n\t\t\tte[ 1 ] = c * f;\n\t\t\tte[ 5 ] = bf * d + ae;\n\t\t\tte[ 9 ] = af * d - be;\n\n\t\t\tte[ 2 ] = - d;\n\t\t\tte[ 6 ] = b * c;\n\t\t\tte[ 10 ] = a * c;\n\n\t\t} else if ( euler.order === 'YZX' ) {\n\n\t\t\tvar ac = a * c, ad = a * d, bc = b * c, bd = b * d;\n\n\t\t\tte[ 0 ] = c * e;\n\t\t\tte[ 4 ] = bd - ac * f;\n\t\t\tte[ 8 ] = bc * f + ad;\n\n\t\t\tte[ 1 ] = f;\n\t\t\tte[ 5 ] = a * e;\n\t\t\tte[ 9 ] = - b * e;\n\n\t\t\tte[ 2 ] = - d * e;\n\t\t\tte[ 6 ] = ad * f + bc;\n\t\t\tte[ 10 ] = ac - bd * f;\n\n\t\t} else if ( euler.order === 'XZY' ) {\n\n\t\t\tvar ac = a * c, ad = a * d, bc = b * c, bd = b * d;\n\n\t\t\tte[ 0 ] = c * e;\n\t\t\tte[ 4 ] = - f;\n\t\t\tte[ 8 ] = d * e;\n\n\t\t\tte[ 1 ] = ac * f + bd;\n\t\t\tte[ 5 ] = a * e;\n\t\t\tte[ 9 ] = ad * f - bc;\n\n\t\t\tte[ 2 ] = bc * f - ad;\n\t\t\tte[ 6 ] = b * e;\n\t\t\tte[ 10 ] = bd * f + ac;\n\n\t\t}\n\n\t\t// bottom row\n\t\tte[ 3 ] = 0;\n\t\tte[ 7 ] = 0;\n\t\tte[ 11 ] = 0;\n\n\t\t// last column\n\t\tte[ 12 ] = 0;\n\t\tte[ 13 ] = 0;\n\t\tte[ 14 ] = 0;\n\t\tte[ 15 ] = 1;\n\n\t\treturn this;\n\n\t},\n\n\tmakeRotationFromQuaternion: function () {\n\n\t\tvar zero = new Vector3( 0, 0, 0 );\n\t\tvar one = new Vector3( 1, 1, 1 );\n\n\t\treturn function makeRotationFromQuaternion( q ) {\n\n\t\t\treturn this.compose( zero, q, one );\n\n\t\t};\n\n\t}(),\n\n\tlookAt: function () {\n\n\t\tvar x = new Vector3();\n\t\tvar y = new Vector3();\n\t\tvar z = new Vector3();\n\n\t\treturn function lookAt( eye, target, up ) {\n\n\t\t\tvar te = this.elements;\n\n\t\t\tz.subVectors( eye, target );\n\n\t\t\tif ( z.lengthSq() === 0 ) {\n\n\t\t\t\t// eye and target are in the same position\n\n\t\t\t\tz.z = 1;\n\n\t\t\t}\n\n\t\t\tz.normalize();\n\t\t\tx.crossVectors( up, z );\n\n\t\t\tif ( x.lengthSq() === 0 ) {\n\n\t\t\t\t// up and z are parallel\n\n\t\t\t\tif ( Math.abs( up.z ) === 1 ) {\n\n\t\t\t\t\tz.x += 0.0001;\n\n\t\t\t\t} else {\n\n\t\t\t\t\tz.z += 0.0001;\n\n\t\t\t\t}\n\n\t\t\t\tz.normalize();\n\t\t\t\tx.crossVectors( up, z );\n\n\t\t\t}\n\n\t\t\tx.normalize();\n\t\t\ty.crossVectors( z, x );\n\n\t\t\tte[ 0 ] = x.x; te[ 4 ] = y.x; te[ 8 ] = z.x;\n\t\t\tte[ 1 ] = x.y; te[ 5 ] = y.y; te[ 9 ] = z.y;\n\t\t\tte[ 2 ] = x.z; te[ 6 ] = y.z; te[ 10 ] = z.z;\n\n\t\t\treturn this;\n\n\t\t};\n\n\t}(),\n\n\tmultiply: function ( m, n ) {\n\n\t\tif ( n !== undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Matrix4: .multiply() now only accepts one argument. Use .multiplyMatrices( a, b ) instead.' );\n\t\t\treturn this.multiplyMatrices( m, n );\n\n\t\t}\n\n\t\treturn this.multiplyMatrices( this, m );\n\n\t},\n\n\tpremultiply: function ( m ) {\n\n\t\treturn this.multiplyMatrices( m, this );\n\n\t},\n\n\tmultiplyMatrices: function ( a, b ) {\n\n\t\tvar ae = a.elements;\n\t\tvar be = b.elements;\n\t\tvar te = this.elements;\n\n\t\tvar a11 = ae[ 0 ], a12 = ae[ 4 ], a13 = ae[ 8 ], a14 = ae[ 12 ];\n\t\tvar a21 = ae[ 1 ], a22 = ae[ 5 ], a23 = ae[ 9 ], a24 = ae[ 13 ];\n\t\tvar a31 = ae[ 2 ], a32 = ae[ 6 ], a33 = ae[ 10 ], a34 = ae[ 14 ];\n\t\tvar a41 = ae[ 3 ], a42 = ae[ 7 ], a43 = ae[ 11 ], a44 = ae[ 15 ];\n\n\t\tvar b11 = be[ 0 ], b12 = be[ 4 ], b13 = be[ 8 ], b14 = be[ 12 ];\n\t\tvar b21 = be[ 1 ], b22 = be[ 5 ], b23 = be[ 9 ], b24 = be[ 13 ];\n\t\tvar b31 = be[ 2 ], b32 = be[ 6 ], b33 = be[ 10 ], b34 = be[ 14 ];\n\t\tvar b41 = be[ 3 ], b42 = be[ 7 ], b43 = be[ 11 ], b44 = be[ 15 ];\n\n\t\tte[ 0 ] = a11 * b11 + a12 * b21 + a13 * b31 + a14 * b41;\n\t\tte[ 4 ] = a11 * b12 + a12 * b22 + a13 * b32 + a14 * b42;\n\t\tte[ 8 ] = a11 * b13 + a12 * b23 + a13 * b33 + a14 * b43;\n\t\tte[ 12 ] = a11 * b14 + a12 * b24 + a13 * b34 + a14 * b44;\n\n\t\tte[ 1 ] = a21 * b11 + a22 * b21 + a23 * b31 + a24 * b41;\n\t\tte[ 5 ] = a21 * b12 + a22 * b22 + a23 * b32 + a24 * b42;\n\t\tte[ 9 ] = a21 * b13 + a22 * b23 + a23 * b33 + a24 * b43;\n\t\tte[ 13 ] = a21 * b14 + a22 * b24 + a23 * b34 + a24 * b44;\n\n\t\tte[ 2 ] = a31 * b11 + a32 * b21 + a33 * b31 + a34 * b41;\n\t\tte[ 6 ] = a31 * b12 + a32 * b22 + a33 * b32 + a34 * b42;\n\t\tte[ 10 ] = a31 * b13 + a32 * b23 + a33 * b33 + a34 * b43;\n\t\tte[ 14 ] = a31 * b14 + a32 * b24 + a33 * b34 + a34 * b44;\n\n\t\tte[ 3 ] = a41 * b11 + a42 * b21 + a43 * b31 + a44 * b41;\n\t\tte[ 7 ] = a41 * b12 + a42 * b22 + a43 * b32 + a44 * b42;\n\t\tte[ 11 ] = a41 * b13 + a42 * b23 + a43 * b33 + a44 * b43;\n\t\tte[ 15 ] = a41 * b14 + a42 * b24 + a43 * b34 + a44 * b44;\n\n\t\treturn this;\n\n\t},\n\n\tmultiplyScalar: function ( s ) {\n\n\t\tvar te = this.elements;\n\n\t\tte[ 0 ] *= s; te[ 4 ] *= s; te[ 8 ] *= s; te[ 12 ] *= s;\n\t\tte[ 1 ] *= s; te[ 5 ] *= s; te[ 9 ] *= s; te[ 13 ] *= s;\n\t\tte[ 2 ] *= s; te[ 6 ] *= s; te[ 10 ] *= s; te[ 14 ] *= s;\n\t\tte[ 3 ] *= s; te[ 7 ] *= s; te[ 11 ] *= s; te[ 15 ] *= s;\n\n\t\treturn this;\n\n\t},\n\n\tapplyToBufferAttribute: function () {\n\n\t\tvar v1 = new Vector3();\n\n\t\treturn function applyToBufferAttribute( attribute ) {\n\n\t\t\tfor ( var i = 0, l = attribute.count; i < l; i ++ ) {\n\n\t\t\t\tv1.x = attribute.getX( i );\n\t\t\t\tv1.y = attribute.getY( i );\n\t\t\t\tv1.z = attribute.getZ( i );\n\n\t\t\t\tv1.applyMatrix4( this );\n\n\t\t\t\tattribute.setXYZ( i, v1.x, v1.y, v1.z );\n\n\t\t\t}\n\n\t\t\treturn attribute;\n\n\t\t};\n\n\t}(),\n\n\tdeterminant: function () {\n\n\t\tvar te = this.elements;\n\n\t\tvar n11 = te[ 0 ], n12 = te[ 4 ], n13 = te[ 8 ], n14 = te[ 12 ];\n\t\tvar n21 = te[ 1 ], n22 = te[ 5 ], n23 = te[ 9 ], n24 = te[ 13 ];\n\t\tvar n31 = te[ 2 ], n32 = te[ 6 ], n33 = te[ 10 ], n34 = te[ 14 ];\n\t\tvar n41 = te[ 3 ], n42 = te[ 7 ], n43 = te[ 11 ], n44 = te[ 15 ];\n\n\t\t//TODO: make this more efficient\n\t\t//( based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm )\n\n\t\treturn (\n\t\t\tn41 * (\n\t\t\t\t+ n14 * n23 * n32\n\t\t\t\t - n13 * n24 * n32\n\t\t\t\t - n14 * n22 * n33\n\t\t\t\t + n12 * n24 * n33\n\t\t\t\t + n13 * n22 * n34\n\t\t\t\t - n12 * n23 * n34\n\t\t\t) +\n\t\t\tn42 * (\n\t\t\t\t+ n11 * n23 * n34\n\t\t\t\t - n11 * n24 * n33\n\t\t\t\t + n14 * n21 * n33\n\t\t\t\t - n13 * n21 * n34\n\t\t\t\t + n13 * n24 * n31\n\t\t\t\t - n14 * n23 * n31\n\t\t\t) +\n\t\t\tn43 * (\n\t\t\t\t+ n11 * n24 * n32\n\t\t\t\t - n11 * n22 * n34\n\t\t\t\t - n14 * n21 * n32\n\t\t\t\t + n12 * n21 * n34\n\t\t\t\t + n14 * n22 * n31\n\t\t\t\t - n12 * n24 * n31\n\t\t\t) +\n\t\t\tn44 * (\n\t\t\t\t- n13 * n22 * n31\n\t\t\t\t - n11 * n23 * n32\n\t\t\t\t + n11 * n22 * n33\n\t\t\t\t + n13 * n21 * n32\n\t\t\t\t - n12 * n21 * n33\n\t\t\t\t + n12 * n23 * n31\n\t\t\t)\n\n\t\t);\n\n\t},\n\n\ttranspose: function () {\n\n\t\tvar te = this.elements;\n\t\tvar tmp;\n\n\t\ttmp = te[ 1 ]; te[ 1 ] = te[ 4 ]; te[ 4 ] = tmp;\n\t\ttmp = te[ 2 ]; te[ 2 ] = te[ 8 ]; te[ 8 ] = tmp;\n\t\ttmp = te[ 6 ]; te[ 6 ] = te[ 9 ]; te[ 9 ] = tmp;\n\n\t\ttmp = te[ 3 ]; te[ 3 ] = te[ 12 ]; te[ 12 ] = tmp;\n\t\ttmp = te[ 7 ]; te[ 7 ] = te[ 13 ]; te[ 13 ] = tmp;\n\t\ttmp = te[ 11 ]; te[ 11 ] = te[ 14 ]; te[ 14 ] = tmp;\n\n\t\treturn this;\n\n\t},\n\n\tsetPosition: function ( x, y, z ) {\n\n\t\tvar te = this.elements;\n\n\t\tif ( x.isVector3 ) {\n\n\t\t\tte[ 12 ] = x.x;\n\t\t\tte[ 13 ] = x.y;\n\t\t\tte[ 14 ] = x.z;\n\n\t\t} else {\n\n\t\t\tte[ 12 ] = x;\n\t\t\tte[ 13 ] = y;\n\t\t\tte[ 14 ] = z;\n\n\t\t}\n\n\t\treturn this;\n\n\t},\n\n\tgetInverse: function ( m, throwOnDegenerate ) {\n\n\t\t// based on http://www.euclideanspace.com/maths/algebra/matrix/functions/inverse/fourD/index.htm\n\t\tvar te = this.elements,\n\t\t\tme = m.elements,\n\n\t\t\tn11 = me[ 0 ], n21 = me[ 1 ], n31 = me[ 2 ], n41 = me[ 3 ],\n\t\t\tn12 = me[ 4 ], n22 = me[ 5 ], n32 = me[ 6 ], n42 = me[ 7 ],\n\t\t\tn13 = me[ 8 ], n23 = me[ 9 ], n33 = me[ 10 ], n43 = me[ 11 ],\n\t\t\tn14 = me[ 12 ], n24 = me[ 13 ], n34 = me[ 14 ], n44 = me[ 15 ],\n\n\t\t\tt11 = n23 * n34 * n42 - n24 * n33 * n42 + n24 * n32 * n43 - n22 * n34 * n43 - n23 * n32 * n44 + n22 * n33 * n44,\n\t\t\tt12 = n14 * n33 * n42 - n13 * n34 * n42 - n14 * n32 * n43 + n12 * n34 * n43 + n13 * n32 * n44 - n12 * n33 * n44,\n\t\t\tt13 = n13 * n24 * n42 - n14 * n23 * n42 + n14 * n22 * n43 - n12 * n24 * n43 - n13 * n22 * n44 + n12 * n23 * n44,\n\t\t\tt14 = n14 * n23 * n32 - n13 * n24 * n32 - n14 * n22 * n33 + n12 * n24 * n33 + n13 * n22 * n34 - n12 * n23 * n34;\n\n\t\tvar det = n11 * t11 + n21 * t12 + n31 * t13 + n41 * t14;\n\n\t\tif ( det === 0 ) {\n\n\t\t\tvar msg = \"THREE.Matrix4: .getInverse() can't invert matrix, determinant is 0\";\n\n\t\t\tif ( throwOnDegenerate === true ) {\n\n\t\t\t\tthrow new Error( msg );\n\n\t\t\t} else {\n\n\t\t\t\tconsole.warn( msg );\n\n\t\t\t}\n\n\t\t\treturn this.identity();\n\n\t\t}\n\n\t\tvar detInv = 1 / det;\n\n\t\tte[ 0 ] = t11 * detInv;\n\t\tte[ 1 ] = ( n24 * n33 * n41 - n23 * n34 * n41 - n24 * n31 * n43 + n21 * n34 * n43 + n23 * n31 * n44 - n21 * n33 * n44 ) * detInv;\n\t\tte[ 2 ] = ( n22 * n34 * n41 - n24 * n32 * n41 + n24 * n31 * n42 - n21 * n34 * n42 - n22 * n31 * n44 + n21 * n32 * n44 ) * detInv;\n\t\tte[ 3 ] = ( n23 * n32 * n41 - n22 * n33 * n41 - n23 * n31 * n42 + n21 * n33 * n42 + n22 * n31 * n43 - n21 * n32 * n43 ) * detInv;\n\n\t\tte[ 4 ] = t12 * detInv;\n\t\tte[ 5 ] = ( n13 * n34 * n41 - n14 * n33 * n41 + n14 * n31 * n43 - n11 * n34 * n43 - n13 * n31 * n44 + n11 * n33 * n44 ) * detInv;\n\t\tte[ 6 ] = ( n14 * n32 * n41 - n12 * n34 * n41 - n14 * n31 * n42 + n11 * n34 * n42 + n12 * n31 * n44 - n11 * n32 * n44 ) * detInv;\n\t\tte[ 7 ] = ( n12 * n33 * n41 - n13 * n32 * n41 + n13 * n31 * n42 - n11 * n33 * n42 - n12 * n31 * n43 + n11 * n32 * n43 ) * detInv;\n\n\t\tte[ 8 ] = t13 * detInv;\n\t\tte[ 9 ] = ( n14 * n23 * n41 - n13 * n24 * n41 - n14 * n21 * n43 + n11 * n24 * n43 + n13 * n21 * n44 - n11 * n23 * n44 ) * detInv;\n\t\tte[ 10 ] = ( n12 * n24 * n41 - n14 * n22 * n41 + n14 * n21 * n42 - n11 * n24 * n42 - n12 * n21 * n44 + n11 * n22 * n44 ) * detInv;\n\t\tte[ 11 ] = ( n13 * n22 * n41 - n12 * n23 * n41 - n13 * n21 * n42 + n11 * n23 * n42 + n12 * n21 * n43 - n11 * n22 * n43 ) * detInv;\n\n\t\tte[ 12 ] = t14 * detInv;\n\t\tte[ 13 ] = ( n13 * n24 * n31 - n14 * n23 * n31 + n14 * n21 * n33 - n11 * n24 * n33 - n13 * n21 * n34 + n11 * n23 * n34 ) * detInv;\n\t\tte[ 14 ] = ( n14 * n22 * n31 - n12 * n24 * n31 - n14 * n21 * n32 + n11 * n24 * n32 + n12 * n21 * n34 - n11 * n22 * n34 ) * detInv;\n\t\tte[ 15 ] = ( n12 * n23 * n31 - n13 * n22 * n31 + n13 * n21 * n32 - n11 * n23 * n32 - n12 * n21 * n33 + n11 * n22 * n33 ) * detInv;\n\n\t\treturn this;\n\n\t},\n\n\tscale: function ( v ) {\n\n\t\tvar te = this.elements;\n\t\tvar x = v.x, y = v.y, z = v.z;\n\n\t\tte[ 0 ] *= x; te[ 4 ] *= y; te[ 8 ] *= z;\n\t\tte[ 1 ] *= x; te[ 5 ] *= y; te[ 9 ] *= z;\n\t\tte[ 2 ] *= x; te[ 6 ] *= y; te[ 10 ] *= z;\n\t\tte[ 3 ] *= x; te[ 7 ] *= y; te[ 11 ] *= z;\n\n\t\treturn this;\n\n\t},\n\n\tgetMaxScaleOnAxis: function () {\n\n\t\tvar te = this.elements;\n\n\t\tvar scaleXSq = te[ 0 ] * te[ 0 ] + te[ 1 ] * te[ 1 ] + te[ 2 ] * te[ 2 ];\n\t\tvar scaleYSq = te[ 4 ] * te[ 4 ] + te[ 5 ] * te[ 5 ] + te[ 6 ] * te[ 6 ];\n\t\tvar scaleZSq = te[ 8 ] * te[ 8 ] + te[ 9 ] * te[ 9 ] + te[ 10 ] * te[ 10 ];\n\n\t\treturn Math.sqrt( Math.max( scaleXSq, scaleYSq, scaleZSq ) );\n\n\t},\n\n\tmakeTranslation: function ( x, y, z ) {\n\n\t\tthis.set(\n\n\t\t\t1, 0, 0, x,\n\t\t\t0, 1, 0, y,\n\t\t\t0, 0, 1, z,\n\t\t\t0, 0, 0, 1\n\n\t\t);\n\n\t\treturn this;\n\n\t},\n\n\tmakeRotationX: function ( theta ) {\n\n\t\tvar c = Math.cos( theta ), s = Math.sin( theta );\n\n\t\tthis.set(\n\n\t\t\t1, 0, 0, 0,\n\t\t\t0, c, - s, 0,\n\t\t\t0, s, c, 0,\n\t\t\t0, 0, 0, 1\n\n\t\t);\n\n\t\treturn this;\n\n\t},\n\n\tmakeRotationY: function ( theta ) {\n\n\t\tvar c = Math.cos( theta ), s = Math.sin( theta );\n\n\t\tthis.set(\n\n\t\t\t c, 0, s, 0,\n\t\t\t 0, 1, 0, 0,\n\t\t\t- s, 0, c, 0,\n\t\t\t 0, 0, 0, 1\n\n\t\t);\n\n\t\treturn this;\n\n\t},\n\n\tmakeRotationZ: function ( theta ) {\n\n\t\tvar c = Math.cos( theta ), s = Math.sin( theta );\n\n\t\tthis.set(\n\n\t\t\tc, - s, 0, 0,\n\t\t\ts, c, 0, 0,\n\t\t\t0, 0, 1, 0,\n\t\t\t0, 0, 0, 1\n\n\t\t);\n\n\t\treturn this;\n\n\t},\n\n\tmakeRotationAxis: function ( axis, angle ) {\n\n\t\t// Based on http://www.gamedev.net/reference/articles/article1199.asp\n\n\t\tvar c = Math.cos( angle );\n\t\tvar s = Math.sin( angle );\n\t\tvar t = 1 - c;\n\t\tvar x = axis.x, y = axis.y, z = axis.z;\n\t\tvar tx = t * x, ty = t * y;\n\n\t\tthis.set(\n\n\t\t\ttx * x + c, tx * y - s * z, tx * z + s * y, 0,\n\t\t\ttx * y + s * z, ty * y + c, ty * z - s * x, 0,\n\t\t\ttx * z - s * y, ty * z + s * x, t * z * z + c, 0,\n\t\t\t0, 0, 0, 1\n\n\t\t);\n\n\t\t return this;\n\n\t},\n\n\tmakeScale: function ( x, y, z ) {\n\n\t\tthis.set(\n\n\t\t\tx, 0, 0, 0,\n\t\t\t0, y, 0, 0,\n\t\t\t0, 0, z, 0,\n\t\t\t0, 0, 0, 1\n\n\t\t);\n\n\t\treturn this;\n\n\t},\n\n\tmakeShear: function ( x, y, z ) {\n\n\t\tthis.set(\n\n\t\t\t1, y, z, 0,\n\t\t\tx, 1, z, 0,\n\t\t\tx, y, 1, 0,\n\t\t\t0, 0, 0, 1\n\n\t\t);\n\n\t\treturn this;\n\n\t},\n\n\tcompose: function ( position, quaternion, scale ) {\n\n\t\tvar te = this.elements;\n\n\t\tvar x = quaternion._x, y = quaternion._y, z = quaternion._z, w = quaternion._w;\n\t\tvar x2 = x + x,\ty2 = y + y, z2 = z + z;\n\t\tvar xx = x * x2, xy = x * y2, xz = x * z2;\n\t\tvar yy = y * y2, yz = y * z2, zz = z * z2;\n\t\tvar wx = w * x2, wy = w * y2, wz = w * z2;\n\n\t\tvar sx = scale.x, sy = scale.y, sz = scale.z;\n\n\t\tte[ 0 ] = ( 1 - ( yy + zz ) ) * sx;\n\t\tte[ 1 ] = ( xy + wz ) * sx;\n\t\tte[ 2 ] = ( xz - wy ) * sx;\n\t\tte[ 3 ] = 0;\n\n\t\tte[ 4 ] = ( xy - wz ) * sy;\n\t\tte[ 5 ] = ( 1 - ( xx + zz ) ) * sy;\n\t\tte[ 6 ] = ( yz + wx ) * sy;\n\t\tte[ 7 ] = 0;\n\n\t\tte[ 8 ] = ( xz + wy ) * sz;\n\t\tte[ 9 ] = ( yz - wx ) * sz;\n\t\tte[ 10 ] = ( 1 - ( xx + yy ) ) * sz;\n\t\tte[ 11 ] = 0;\n\n\t\tte[ 12 ] = position.x;\n\t\tte[ 13 ] = position.y;\n\t\tte[ 14 ] = position.z;\n\t\tte[ 15 ] = 1;\n\n\t\treturn this;\n\n\t},\n\n\tdecompose: function () {\n\n\t\tvar vector = new Vector3();\n\t\tvar matrix = new Matrix4();\n\n\t\treturn function decompose( position, quaternion, scale ) {\n\n\t\t\tvar te = this.elements;\n\n\t\t\tvar sx = vector.set( te[ 0 ], te[ 1 ], te[ 2 ] ).length();\n\t\t\tvar sy = vector.set( te[ 4 ], te[ 5 ], te[ 6 ] ).length();\n\t\t\tvar sz = vector.set( te[ 8 ], te[ 9 ], te[ 10 ] ).length();\n\n\t\t\t// if determine is negative, we need to invert one scale\n\t\t\tvar det = this.determinant();\n\t\t\tif ( det < 0 ) sx = - sx;\n\n\t\t\tposition.x = te[ 12 ];\n\t\t\tposition.y = te[ 13 ];\n\t\t\tposition.z = te[ 14 ];\n\n\t\t\t// scale the rotation part\n\t\t\tmatrix.copy( this );\n\n\t\t\tvar invSX = 1 / sx;\n\t\t\tvar invSY = 1 / sy;\n\t\t\tvar invSZ = 1 / sz;\n\n\t\t\tmatrix.elements[ 0 ] *= invSX;\n\t\t\tmatrix.elements[ 1 ] *= invSX;\n\t\t\tmatrix.elements[ 2 ] *= invSX;\n\n\t\t\tmatrix.elements[ 4 ] *= invSY;\n\t\t\tmatrix.elements[ 5 ] *= invSY;\n\t\t\tmatrix.elements[ 6 ] *= invSY;\n\n\t\t\tmatrix.elements[ 8 ] *= invSZ;\n\t\t\tmatrix.elements[ 9 ] *= invSZ;\n\t\t\tmatrix.elements[ 10 ] *= invSZ;\n\n\t\t\tquaternion.setFromRotationMatrix( matrix );\n\n\t\t\tscale.x = sx;\n\t\t\tscale.y = sy;\n\t\t\tscale.z = sz;\n\n\t\t\treturn this;\n\n\t\t};\n\n\t}(),\n\n\tmakePerspective: function ( left, right, top, bottom, near, far ) {\n\n\t\tif ( far === undefined ) {\n\n\t\t\tconsole.warn( 'THREE.Matrix4: .makePerspective() has been redefined and has a new signature. Please check the docs.' );\n\n\t\t}\n\n\t\tvar te = this.elements;\n\t\tvar x = 2 * near / ( right - left );\n\t\tvar y = 2 * near / ( top - bottom );\n\n\t\tvar a = ( right + left ) / ( right - left );\n\t\tvar b = ( top + bottom ) / ( top - bottom );\n\t\tvar c = - ( far + near ) / ( far - near );\n\t\tvar d = - 2 * far * near / ( far - near );\n\n\t\tte[ 0 ] = x;\tte[ 4 ] = 0;\tte[ 8 ] = a;\tte[ 12 ] = 0;\n\t\tte[ 1 ] = 0;\tte[ 5 ] = y;\tte[ 9 ] = b;\tte[ 13 ] = 0;\n\t\tte[ 2 ] = 0;\tte[ 6 ] = 0;\tte[ 10 ] = c;\tte[ 14 ] = d;\n\t\tte[ 3 ] = 0;\tte[ 7 ] = 0;\tte[ 11 ] = - 1;\tte[ 15 ] = 0;\n\n\t\treturn this;\n\n\t},\n\n\tmakeOrthographic: function ( left, right, top, bottom, near, far ) {\n\n\t\tvar te = this.elements;\n\t\tvar w = 1.0 / ( right - left );\n\t\tvar h = 1.0 / ( top - bottom );\n\t\tvar p = 1.0 / ( far - near );\n\n\t\tvar x = ( right + left ) * w;\n\t\tvar y = ( top + bottom ) * h;\n\t\tvar z = ( far + near ) * p;\n\n\t\tte[ 0 ] = 2 * w;\tte[ 4 ] = 0;\tte[ 8 ] = 0;\tte[ 12 ] = - x;\n\t\tte[ 1 ] = 0;\tte[ 5 ] = 2 * h;\tte[ 9 ] = 0;\tte[ 13 ] = - y;\n\t\tte[ 2 ] = 0;\tte[ 6 ] = 0;\tte[ 10 ] = - 2 * p;\tte[ 14 ] = - z;\n\t\tte[ 3 ] = 0;\tte[ 7 ] = 0;\tte[ 11 ] = 0;\tte[ 15 ] = 1;\n\n\t\treturn this;\n\n\t},\n\n\tequals: function ( matrix ) {\n\n\t\tvar te = this.elements;\n\t\tvar me = matrix.elements;\n\n\t\tfor ( var i = 0; i < 16; i ++ ) {\n\n\t\t\tif ( te[ i ] !== me[ i ] ) return false;\n\n\t\t}\n\n\t\treturn true;\n\n\t},\n\n\tfromArray: function ( array, offset ) {\n\n\t\tif ( offset === undefined ) offset = 0;\n\n\t\tfor ( var i = 0; i < 16; i ++ ) {\n\n\t\t\tthis.elements[ i ] = array[ i + offset ];\n\n\t\t}\n\n\t\treturn this;\n\n\t},\n\n\ttoArray: function ( array, offset ) {\n\n\t\tif ( array === undefined ) array = [];\n\t\tif ( offset === undefined ) offset = 0;\n\n\t\tvar te = this.elements;\n\n\t\tarray[ offset ] = te[ 0 ];\n\t\tarray[ offset + 1 ] = te[ 1 ];\n\t\tarray[ offset + 2 ] = te[ 2 ];\n\t\tarray[ offset + 3 ] = te[ 3 ];\n\n\t\tarray[ offset + 4 ] = te[ 4 ];\n\t\tarray[ offset + 5 ] = te[ 5 ];\n\t\tarray[ offset + 6 ] = te[ 6 ];\n\t\tarray[ offset + 7 ] = te[ 7 ];\n\n\t\tarray[ offset + 8 ] = te[ 8 ];\n\t\tarray[ offset + 9 ] = te[ 9 ];\n\t\tarray[ offset + 10 ] = te[ 10 ];\n\t\tarray[ offset + 11 ] = te[ 11 ];\n\n\t\tarray[ offset + 12 ] = te[ 12 ];\n\t\tarray[ offset + 13 ] = te[ 13 ];\n\t\tarray[ offset + 14 ] = te[ 14 ];\n\t\tarray[ offset + 15 ] = te[ 15 ];\n\n\t\treturn array;\n\n\t}\n\n} );\n\nvar alphamap_fragment = \"#ifdef USE_ALPHAMAP\\n\\tdiffuseColor.a *= texture2D( alphaMap, vUv ).g;\\n#endif\";\n\nvar alphamap_pars_fragment = \"#ifdef USE_ALPHAMAP\\n\\tuniform sampler2D alphaMap;\\n#endif\";\n\nvar alphatest_fragment = \"#ifdef ALPHATEST\\n\\tif ( diffuseColor.a < ALPHATEST ) discard;\\n#endif\";\n\nvar aomap_fragment = \"#ifdef USE_AOMAP\\n\\tfloat ambientOcclusion = ( texture2D( aoMap, vUv2 ).r - 1.0 ) * aoMapIntensity + 1.0;\\n\\treflectedLight.indirectDiffuse *= ambientOcclusion;\\n\\t#if defined( USE_ENVMAP ) && defined( PHYSICAL )\\n\\t\\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\\n\\t\\treflectedLight.indirectSpecular *= computeSpecularOcclusion( dotNV, ambientOcclusion, material.specularRoughness );\\n\\t#endif\\n#endif\";\n\nvar aomap_pars_fragment = \"#ifdef USE_AOMAP\\n\\tuniform sampler2D aoMap;\\n\\tuniform float aoMapIntensity;\\n#endif\";\n\nvar begin_vertex = \"vec3 transformed = vec3( position );\";\n\nvar beginnormal_vertex = \"vec3 objectNormal = vec3( normal );\\n#ifdef USE_TANGENT\\n\\tvec3 objectTangent = vec3( tangent.xyz );\\n#endif\";\n\nvar bsdfs = \"vec2 integrateSpecularBRDF( const in float dotNV, const in float roughness ) {\\n\\tconst vec4 c0 = vec4( - 1, - 0.0275, - 0.572, 0.022 );\\n\\tconst vec4 c1 = vec4( 1, 0.0425, 1.04, - 0.04 );\\n\\tvec4 r = roughness * c0 + c1;\\n\\tfloat a004 = min( r.x * r.x, exp2( - 9.28 * dotNV ) ) * r.x + r.y;\\n\\treturn vec2( -1.04, 1.04 ) * a004 + r.zw;\\n}\\nfloat punctualLightIntensityToIrradianceFactor( const in float lightDistance, const in float cutoffDistance, const in float decayExponent ) {\\n#if defined ( PHYSICALLY_CORRECT_LIGHTS )\\n\\tfloat distanceFalloff = 1.0 / max( pow( lightDistance, decayExponent ), 0.01 );\\n\\tif( cutoffDistance > 0.0 ) {\\n\\t\\tdistanceFalloff *= pow2( saturate( 1.0 - pow4( lightDistance / cutoffDistance ) ) );\\n\\t}\\n\\treturn distanceFalloff;\\n#else\\n\\tif( cutoffDistance > 0.0 && decayExponent > 0.0 ) {\\n\\t\\treturn pow( saturate( -lightDistance / cutoffDistance + 1.0 ), decayExponent );\\n\\t}\\n\\treturn 1.0;\\n#endif\\n}\\nvec3 BRDF_Diffuse_Lambert( const in vec3 diffuseColor ) {\\n\\treturn RECIPROCAL_PI * diffuseColor;\\n}\\nvec3 F_Schlick( const in vec3 specularColor, const in float dotLH ) {\\n\\tfloat fresnel = exp2( ( -5.55473 * dotLH - 6.98316 ) * dotLH );\\n\\treturn ( 1.0 - specularColor ) * fresnel + specularColor;\\n}\\nvec3 F_Schlick_RoughnessDependent( const in vec3 F0, const in float dotNV, const in float roughness ) {\\n\\tfloat fresnel = exp2( ( -5.55473 * dotNV - 6.98316 ) * dotNV );\\n\\tvec3 Fr = max( vec3( 1.0 - roughness ), F0 ) - F0;\\n\\treturn Fr * fresnel + F0;\\n}\\nfloat G_GGX_Smith( const in float alpha, const in float dotNL, const in float dotNV ) {\\n\\tfloat a2 = pow2( alpha );\\n\\tfloat gl = dotNL + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\\n\\tfloat gv = dotNV + sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\\n\\treturn 1.0 / ( gl * gv );\\n}\\nfloat G_GGX_SmithCorrelated( const in float alpha, const in float dotNL, const in float dotNV ) {\\n\\tfloat a2 = pow2( alpha );\\n\\tfloat gv = dotNL * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNV ) );\\n\\tfloat gl = dotNV * sqrt( a2 + ( 1.0 - a2 ) * pow2( dotNL ) );\\n\\treturn 0.5 / max( gv + gl, EPSILON );\\n}\\nfloat D_GGX( const in float alpha, const in float dotNH ) {\\n\\tfloat a2 = pow2( alpha );\\n\\tfloat denom = pow2( dotNH ) * ( a2 - 1.0 ) + 1.0;\\n\\treturn RECIPROCAL_PI * a2 / pow2( denom );\\n}\\nvec3 BRDF_Specular_GGX( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\\n\\tfloat alpha = pow2( roughness );\\n\\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\\n\\tfloat dotNL = saturate( dot( geometry.normal, incidentLight.direction ) );\\n\\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\\n\\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\\n\\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\\n\\tvec3 F = F_Schlick( specularColor, dotLH );\\n\\tfloat G = G_GGX_SmithCorrelated( alpha, dotNL, dotNV );\\n\\tfloat D = D_GGX( alpha, dotNH );\\n\\treturn F * ( G * D );\\n}\\nvec2 LTC_Uv( const in vec3 N, const in vec3 V, const in float roughness ) {\\n\\tconst float LUT_SIZE = 64.0;\\n\\tconst float LUT_SCALE = ( LUT_SIZE - 1.0 ) / LUT_SIZE;\\n\\tconst float LUT_BIAS = 0.5 / LUT_SIZE;\\n\\tfloat dotNV = saturate( dot( N, V ) );\\n\\tvec2 uv = vec2( roughness, sqrt( 1.0 - dotNV ) );\\n\\tuv = uv * LUT_SCALE + LUT_BIAS;\\n\\treturn uv;\\n}\\nfloat LTC_ClippedSphereFormFactor( const in vec3 f ) {\\n\\tfloat l = length( f );\\n\\treturn max( ( l * l + f.z ) / ( l + 1.0 ), 0.0 );\\n}\\nvec3 LTC_EdgeVectorFormFactor( const in vec3 v1, const in vec3 v2 ) {\\n\\tfloat x = dot( v1, v2 );\\n\\tfloat y = abs( x );\\n\\tfloat a = 0.8543985 + ( 0.4965155 + 0.0145206 * y ) * y;\\n\\tfloat b = 3.4175940 + ( 4.1616724 + y ) * y;\\n\\tfloat v = a / b;\\n\\tfloat theta_sintheta = ( x > 0.0 ) ? v : 0.5 * inversesqrt( max( 1.0 - x * x, 1e-7 ) ) - v;\\n\\treturn cross( v1, v2 ) * theta_sintheta;\\n}\\nvec3 LTC_Evaluate( const in vec3 N, const in vec3 V, const in vec3 P, const in mat3 mInv, const in vec3 rectCoords[ 4 ] ) {\\n\\tvec3 v1 = rectCoords[ 1 ] - rectCoords[ 0 ];\\n\\tvec3 v2 = rectCoords[ 3 ] - rectCoords[ 0 ];\\n\\tvec3 lightNormal = cross( v1, v2 );\\n\\tif( dot( lightNormal, P - rectCoords[ 0 ] ) < 0.0 ) return vec3( 0.0 );\\n\\tvec3 T1, T2;\\n\\tT1 = normalize( V - N * dot( V, N ) );\\n\\tT2 = - cross( N, T1 );\\n\\tmat3 mat = mInv * transposeMat3( mat3( T1, T2, N ) );\\n\\tvec3 coords[ 4 ];\\n\\tcoords[ 0 ] = mat * ( rectCoords[ 0 ] - P );\\n\\tcoords[ 1 ] = mat * ( rectCoords[ 1 ] - P );\\n\\tcoords[ 2 ] = mat * ( rectCoords[ 2 ] - P );\\n\\tcoords[ 3 ] = mat * ( rectCoords[ 3 ] - P );\\n\\tcoords[ 0 ] = normalize( coords[ 0 ] );\\n\\tcoords[ 1 ] = normalize( coords[ 1 ] );\\n\\tcoords[ 2 ] = normalize( coords[ 2 ] );\\n\\tcoords[ 3 ] = normalize( coords[ 3 ] );\\n\\tvec3 vectorFormFactor = vec3( 0.0 );\\n\\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 0 ], coords[ 1 ] );\\n\\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 1 ], coords[ 2 ] );\\n\\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 2 ], coords[ 3 ] );\\n\\tvectorFormFactor += LTC_EdgeVectorFormFactor( coords[ 3 ], coords[ 0 ] );\\n\\tfloat result = LTC_ClippedSphereFormFactor( vectorFormFactor );\\n\\treturn vec3( result );\\n}\\nvec3 BRDF_Specular_GGX_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness ) {\\n\\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\\n\\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\\n\\treturn specularColor * brdf.x + brdf.y;\\n}\\nvoid BRDF_Specular_Multiscattering_Environment( const in GeometricContext geometry, const in vec3 specularColor, const in float roughness, inout vec3 singleScatter, inout vec3 multiScatter ) {\\n\\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\\n\\tvec3 F = F_Schlick_RoughnessDependent( specularColor, dotNV, roughness );\\n\\tvec2 brdf = integrateSpecularBRDF( dotNV, roughness );\\n\\tvec3 FssEss = F * brdf.x + brdf.y;\\n\\tfloat Ess = brdf.x + brdf.y;\\n\\tfloat Ems = 1.0 - Ess;\\n\\tvec3 Favg = specularColor + ( 1.0 - specularColor ) * 0.047619;\\tvec3 Fms = FssEss * Favg / ( 1.0 - Ems * Favg );\\n\\tsingleScatter += FssEss;\\n\\tmultiScatter += Fms * Ems;\\n}\\nfloat G_BlinnPhong_Implicit( ) {\\n\\treturn 0.25;\\n}\\nfloat D_BlinnPhong( const in float shininess, const in float dotNH ) {\\n\\treturn RECIPROCAL_PI * ( shininess * 0.5 + 1.0 ) * pow( dotNH, shininess );\\n}\\nvec3 BRDF_Specular_BlinnPhong( const in IncidentLight incidentLight, const in GeometricContext geometry, const in vec3 specularColor, const in float shininess ) {\\n\\tvec3 halfDir = normalize( incidentLight.direction + geometry.viewDir );\\n\\tfloat dotNH = saturate( dot( geometry.normal, halfDir ) );\\n\\tfloat dotLH = saturate( dot( incidentLight.direction, halfDir ) );\\n\\tvec3 F = F_Schlick( specularColor, dotLH );\\n\\tfloat G = G_BlinnPhong_Implicit( );\\n\\tfloat D = D_BlinnPhong( shininess, dotNH );\\n\\treturn F * ( G * D );\\n}\\nfloat GGXRoughnessToBlinnExponent( const in float ggxRoughness ) {\\n\\treturn ( 2.0 / pow2( ggxRoughness + 0.0001 ) - 2.0 );\\n}\\nfloat BlinnExponentToGGXRoughness( const in float blinnExponent ) {\\n\\treturn sqrt( 2.0 / ( blinnExponent + 2.0 ) );\\n}\";\n\nvar bumpmap_pars_fragment = \"#ifdef USE_BUMPMAP\\n\\tuniform sampler2D bumpMap;\\n\\tuniform float bumpScale;\\n\\tvec2 dHdxy_fwd() {\\n\\t\\tvec2 dSTdx = dFdx( vUv );\\n\\t\\tvec2 dSTdy = dFdy( vUv );\\n\\t\\tfloat Hll = bumpScale * texture2D( bumpMap, vUv ).x;\\n\\t\\tfloat dBx = bumpScale * texture2D( bumpMap, vUv + dSTdx ).x - Hll;\\n\\t\\tfloat dBy = bumpScale * texture2D( bumpMap, vUv + dSTdy ).x - Hll;\\n\\t\\treturn vec2( dBx, dBy );\\n\\t}\\n\\tvec3 perturbNormalArb( vec3 surf_pos, vec3 surf_norm, vec2 dHdxy ) {\\n\\t\\tvec3 vSigmaX = vec3( dFdx( surf_pos.x ), dFdx( surf_pos.y ), dFdx( surf_pos.z ) );\\n\\t\\tvec3 vSigmaY = vec3( dFdy( surf_pos.x ), dFdy( surf_pos.y ), dFdy( surf_pos.z ) );\\n\\t\\tvec3 vN = surf_norm;\\n\\t\\tvec3 R1 = cross( vSigmaY, vN );\\n\\t\\tvec3 R2 = cross( vN, vSigmaX );\\n\\t\\tfloat fDet = dot( vSigmaX, R1 );\\n\\t\\tfDet *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\\n\\t\\tvec3 vGrad = sign( fDet ) * ( dHdxy.x * R1 + dHdxy.y * R2 );\\n\\t\\treturn normalize( abs( fDet ) * surf_norm - vGrad );\\n\\t}\\n#endif\";\n\nvar clipping_planes_fragment = \"#if NUM_CLIPPING_PLANES > 0\\n\\tvec4 plane;\\n\\t#pragma unroll_loop\\n\\tfor ( int i = 0; i < UNION_CLIPPING_PLANES; i ++ ) {\\n\\t\\tplane = clippingPlanes[ i ];\\n\\t\\tif ( dot( vViewPosition, plane.xyz ) > plane.w ) discard;\\n\\t}\\n\\t#if UNION_CLIPPING_PLANES < NUM_CLIPPING_PLANES\\n\\t\\tbool clipped = true;\\n\\t\\t#pragma unroll_loop\\n\\t\\tfor ( int i = UNION_CLIPPING_PLANES; i < NUM_CLIPPING_PLANES; i ++ ) {\\n\\t\\t\\tplane = clippingPlanes[ i ];\\n\\t\\t\\tclipped = ( dot( vViewPosition, plane.xyz ) > plane.w ) && clipped;\\n\\t\\t}\\n\\t\\tif ( clipped ) discard;\\n\\t#endif\\n#endif\";\n\nvar clipping_planes_pars_fragment = \"#if NUM_CLIPPING_PLANES > 0\\n\\t#if ! defined( PHYSICAL ) && ! defined( PHONG ) && ! defined( MATCAP )\\n\\t\\tvarying vec3 vViewPosition;\\n\\t#endif\\n\\tuniform vec4 clippingPlanes[ NUM_CLIPPING_PLANES ];\\n#endif\";\n\nvar clipping_planes_pars_vertex = \"#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG ) && ! defined( MATCAP )\\n\\tvarying vec3 vViewPosition;\\n#endif\";\n\nvar clipping_planes_vertex = \"#if NUM_CLIPPING_PLANES > 0 && ! defined( PHYSICAL ) && ! defined( PHONG ) && ! defined( MATCAP )\\n\\tvViewPosition = - mvPosition.xyz;\\n#endif\";\n\nvar color_fragment = \"#ifdef USE_COLOR\\n\\tdiffuseColor.rgb *= vColor;\\n#endif\";\n\nvar color_pars_fragment = \"#ifdef USE_COLOR\\n\\tvarying vec3 vColor;\\n#endif\";\n\nvar color_pars_vertex = \"#ifdef USE_COLOR\\n\\tvarying vec3 vColor;\\n#endif\";\n\nvar color_vertex = \"#ifdef USE_COLOR\\n\\tvColor.xyz = color.xyz;\\n#endif\";\n\nvar common = \"#define PI 3.14159265359\\n#define PI2 6.28318530718\\n#define PI_HALF 1.5707963267949\\n#define RECIPROCAL_PI 0.31830988618\\n#define RECIPROCAL_PI2 0.15915494\\n#define LOG2 1.442695\\n#define EPSILON 1e-6\\n#define saturate(a) clamp( a, 0.0, 1.0 )\\n#define whiteCompliment(a) ( 1.0 - saturate( a ) )\\nfloat pow2( const in float x ) { return x*x; }\\nfloat pow3( const in float x ) { return x*x*x; }\\nfloat pow4( const in float x ) { float x2 = x*x; return x2*x2; }\\nfloat average( const in vec3 color ) { return dot( color, vec3( 0.3333 ) ); }\\nhighp float rand( const in vec2 uv ) {\\n\\tconst highp float a = 12.9898, b = 78.233, c = 43758.5453;\\n\\thighp float dt = dot( uv.xy, vec2( a,b ) ), sn = mod( dt, PI );\\n\\treturn fract(sin(sn) * c);\\n}\\nstruct IncidentLight {\\n\\tvec3 color;\\n\\tvec3 direction;\\n\\tbool visible;\\n};\\nstruct ReflectedLight {\\n\\tvec3 directDiffuse;\\n\\tvec3 directSpecular;\\n\\tvec3 indirectDiffuse;\\n\\tvec3 indirectSpecular;\\n};\\nstruct GeometricContext {\\n\\tvec3 position;\\n\\tvec3 normal;\\n\\tvec3 viewDir;\\n};\\nvec3 transformDirection( in vec3 dir, in mat4 matrix ) {\\n\\treturn normalize( ( matrix * vec4( dir, 0.0 ) ).xyz );\\n}\\nvec3 inverseTransformDirection( in vec3 dir, in mat4 matrix ) {\\n\\treturn normalize( ( vec4( dir, 0.0 ) * matrix ).xyz );\\n}\\nvec3 projectOnPlane(in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\\n\\tfloat distance = dot( planeNormal, point - pointOnPlane );\\n\\treturn - distance * planeNormal + point;\\n}\\nfloat sideOfPlane( in vec3 point, in vec3 pointOnPlane, in vec3 planeNormal ) {\\n\\treturn sign( dot( point - pointOnPlane, planeNormal ) );\\n}\\nvec3 linePlaneIntersect( in vec3 pointOnLine, in vec3 lineDirection, in vec3 pointOnPlane, in vec3 planeNormal ) {\\n\\treturn lineDirection * ( dot( planeNormal, pointOnPlane - pointOnLine ) / dot( planeNormal, lineDirection ) ) + pointOnLine;\\n}\\nmat3 transposeMat3( const in mat3 m ) {\\n\\tmat3 tmp;\\n\\ttmp[ 0 ] = vec3( m[ 0 ].x, m[ 1 ].x, m[ 2 ].x );\\n\\ttmp[ 1 ] = vec3( m[ 0 ].y, m[ 1 ].y, m[ 2 ].y );\\n\\ttmp[ 2 ] = vec3( m[ 0 ].z, m[ 1 ].z, m[ 2 ].z );\\n\\treturn tmp;\\n}\\nfloat linearToRelativeLuminance( const in vec3 color ) {\\n\\tvec3 weights = vec3( 0.2126, 0.7152, 0.0722 );\\n\\treturn dot( weights, color.rgb );\\n}\";\n\nvar cube_uv_reflection_fragment = \"#ifdef ENVMAP_TYPE_CUBE_UV\\n#define cubeUV_textureSize (1024.0)\\nint getFaceFromDirection(vec3 direction) {\\n\\tvec3 absDirection = abs(direction);\\n\\tint face = -1;\\n\\tif( absDirection.x > absDirection.z ) {\\n\\t\\tif(absDirection.x > absDirection.y )\\n\\t\\t\\tface = direction.x > 0.0 ? 0 : 3;\\n\\t\\telse\\n\\t\\t\\tface = direction.y > 0.0 ? 1 : 4;\\n\\t}\\n\\telse {\\n\\t\\tif(absDirection.z > absDirection.y )\\n\\t\\t\\tface = direction.z > 0.0 ? 2 : 5;\\n\\t\\telse\\n\\t\\t\\tface = direction.y > 0.0 ? 1 : 4;\\n\\t}\\n\\treturn face;\\n}\\n#define cubeUV_maxLods1 (log2(cubeUV_textureSize*0.25) - 1.0)\\n#define cubeUV_rangeClamp (exp2((6.0 - 1.0) * 2.0))\\nvec2 MipLevelInfo( vec3 vec, float roughnessLevel, float roughness ) {\\n\\tfloat scale = exp2(cubeUV_maxLods1 - roughnessLevel);\\n\\tfloat dxRoughness = dFdx(roughness);\\n\\tfloat dyRoughness = dFdy(roughness);\\n\\tvec3 dx = dFdx( vec * scale * dxRoughness );\\n\\tvec3 dy = dFdy( vec * scale * dyRoughness );\\n\\tfloat d = max( dot( dx, dx ), dot( dy, dy ) );\\n\\td = clamp(d, 1.0, cubeUV_rangeClamp);\\n\\tfloat mipLevel = 0.5 * log2(d);\\n\\treturn vec2(floor(mipLevel), fract(mipLevel));\\n}\\n#define cubeUV_maxLods2 (log2(cubeUV_textureSize*0.25) - 2.0)\\n#define cubeUV_rcpTextureSize (1.0 / cubeUV_textureSize)\\nvec2 getCubeUV(vec3 direction, float roughnessLevel, float mipLevel) {\\n\\tmipLevel = roughnessLevel > cubeUV_maxLods2 - 3.0 ? 0.0 : mipLevel;\\n\\tfloat a = 16.0 * cubeUV_rcpTextureSize;\\n\\tvec2 exp2_packed = exp2( vec2( roughnessLevel, mipLevel ) );\\n\\tvec2 rcp_exp2_packed = vec2( 1.0 ) / exp2_packed;\\n\\tfloat powScale = exp2_packed.x * exp2_packed.y;\\n\\tfloat scale = rcp_exp2_packed.x * rcp_exp2_packed.y * 0.25;\\n\\tfloat mipOffset = 0.75*(1.0 - rcp_exp2_packed.y) * rcp_exp2_packed.x;\\n\\tbool bRes = mipLevel == 0.0;\\n\\tscale = bRes && (scale < a) ? a : scale;\\n\\tvec3 r;\\n\\tvec2 offset;\\n\\tint face = getFaceFromDirection(direction);\\n\\tfloat rcpPowScale = 1.0 / powScale;\\n\\tif( face == 0) {\\n\\t\\tr = vec3(direction.x, -direction.z, direction.y);\\n\\t\\toffset = vec2(0.0+mipOffset,0.75 * rcpPowScale);\\n\\t\\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\\n\\t}\\n\\telse if( face == 1) {\\n\\t\\tr = vec3(direction.y, direction.x, direction.z);\\n\\t\\toffset = vec2(scale+mipOffset, 0.75 * rcpPowScale);\\n\\t\\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\\n\\t}\\n\\telse if( face == 2) {\\n\\t\\tr = vec3(direction.z, direction.x, direction.y);\\n\\t\\toffset = vec2(2.0*scale+mipOffset, 0.75 * rcpPowScale);\\n\\t\\toffset.y = bRes && (offset.y < 2.0*a) ? a : offset.y;\\n\\t}\\n\\telse if( face == 3) {\\n\\t\\tr = vec3(direction.x, direction.z, direction.y);\\n\\t\\toffset = vec2(0.0+mipOffset,0.5 * rcpPowScale);\\n\\t\\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\\n\\t}\\n\\telse if( face == 4) {\\n\\t\\tr = vec3(direction.y, direction.x, -direction.z);\\n\\t\\toffset = vec2(scale+mipOffset, 0.5 * rcpPowScale);\\n\\t\\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\\n\\t}\\n\\telse {\\n\\t\\tr = vec3(direction.z, -direction.x, direction.y);\\n\\t\\toffset = vec2(2.0*scale+mipOffset, 0.5 * rcpPowScale);\\n\\t\\toffset.y = bRes && (offset.y < 2.0*a) ? 0.0 : offset.y;\\n\\t}\\n\\tr = normalize(r);\\n\\tfloat texelOffset = 0.5 * cubeUV_rcpTextureSize;\\n\\tvec2 s = ( r.yz / abs( r.x ) + vec2( 1.0 ) ) * 0.5;\\n\\tvec2 base = offset + vec2( texelOffset );\\n\\treturn base + s * ( scale - 2.0 * texelOffset );\\n}\\n#define cubeUV_maxLods3 (log2(cubeUV_textureSize*0.25) - 3.0)\\nvec4 textureCubeUV( sampler2D envMap, vec3 reflectedDirection, float roughness ) {\\n\\tfloat roughnessVal = roughness* cubeUV_maxLods3;\\n\\tfloat r1 = floor(roughnessVal);\\n\\tfloat r2 = r1 + 1.0;\\n\\tfloat t = fract(roughnessVal);\\n\\tvec2 mipInfo = MipLevelInfo(reflectedDirection, r1, roughness);\\n\\tfloat s = mipInfo.y;\\n\\tfloat level0 = mipInfo.x;\\n\\tfloat level1 = level0 + 1.0;\\n\\tlevel1 = level1 > 5.0 ? 5.0 : level1;\\n\\tlevel0 += min( floor( s + 0.5 ), 5.0 );\\n\\tvec2 uv_10 = getCubeUV(reflectedDirection, r1, level0);\\n\\tvec4 color10 = envMapTexelToLinear(texture2D(envMap, uv_10));\\n\\tvec2 uv_20 = getCubeUV(reflectedDirection, r2, level0);\\n\\tvec4 color20 = envMapTexelToLinear(texture2D(envMap, uv_20));\\n\\tvec4 result = mix(color10, color20, t);\\n\\treturn vec4(result.rgb, 1.0);\\n}\\n#endif\";\n\nvar defaultnormal_vertex = \"vec3 transformedNormal = normalMatrix * objectNormal;\\n#ifdef FLIP_SIDED\\n\\ttransformedNormal = - transformedNormal;\\n#endif\\n#ifdef USE_TANGENT\\n\\tvec3 transformedTangent = normalMatrix * objectTangent;\\n\\t#ifdef FLIP_SIDED\\n\\t\\ttransformedTangent = - transformedTangent;\\n\\t#endif\\n#endif\";\n\nvar displacementmap_pars_vertex = \"#ifdef USE_DISPLACEMENTMAP\\n\\tuniform sampler2D displacementMap;\\n\\tuniform float displacementScale;\\n\\tuniform float displacementBias;\\n#endif\";\n\nvar displacementmap_vertex = \"#ifdef USE_DISPLACEMENTMAP\\n\\ttransformed += normalize( objectNormal ) * ( texture2D( displacementMap, uv ).x * displacementScale + displacementBias );\\n#endif\";\n\nvar emissivemap_fragment = \"#ifdef USE_EMISSIVEMAP\\n\\tvec4 emissiveColor = texture2D( emissiveMap, vUv );\\n\\temissiveColor.rgb = emissiveMapTexelToLinear( emissiveColor ).rgb;\\n\\ttotalEmissiveRadiance *= emissiveColor.rgb;\\n#endif\";\n\nvar emissivemap_pars_fragment = \"#ifdef USE_EMISSIVEMAP\\n\\tuniform sampler2D emissiveMap;\\n#endif\";\n\nvar encodings_fragment = \"gl_FragColor = linearToOutputTexel( gl_FragColor );\";\n\nvar encodings_pars_fragment = \"\\nvec4 LinearToLinear( in vec4 value ) {\\n\\treturn value;\\n}\\nvec4 GammaToLinear( in vec4 value, in float gammaFactor ) {\\n\\treturn vec4( pow( value.rgb, vec3( gammaFactor ) ), value.a );\\n}\\nvec4 LinearToGamma( in vec4 value, in float gammaFactor ) {\\n\\treturn vec4( pow( value.rgb, vec3( 1.0 / gammaFactor ) ), value.a );\\n}\\nvec4 sRGBToLinear( in vec4 value ) {\\n\\treturn vec4( mix( pow( value.rgb * 0.9478672986 + vec3( 0.0521327014 ), vec3( 2.4 ) ), value.rgb * 0.0773993808, vec3( lessThanEqual( value.rgb, vec3( 0.04045 ) ) ) ), value.a );\\n}\\nvec4 LinearTosRGB( in vec4 value ) {\\n\\treturn vec4( mix( pow( value.rgb, vec3( 0.41666 ) ) * 1.055 - vec3( 0.055 ), value.rgb * 12.92, vec3( lessThanEqual( value.rgb, vec3( 0.0031308 ) ) ) ), value.a );\\n}\\nvec4 RGBEToLinear( in vec4 value ) {\\n\\treturn vec4( value.rgb * exp2( value.a * 255.0 - 128.0 ), 1.0 );\\n}\\nvec4 LinearToRGBE( in vec4 value ) {\\n\\tfloat maxComponent = max( max( value.r, value.g ), value.b );\\n\\tfloat fExp = clamp( ceil( log2( maxComponent ) ), -128.0, 127.0 );\\n\\treturn vec4( value.rgb / exp2( fExp ), ( fExp + 128.0 ) / 255.0 );\\n}\\nvec4 RGBMToLinear( in vec4 value, in float maxRange ) {\\n\\treturn vec4( value.rgb * value.a * maxRange, 1.0 );\\n}\\nvec4 LinearToRGBM( in vec4 value, in float maxRange ) {\\n\\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\\n\\tfloat M = clamp( maxRGB / maxRange, 0.0, 1.0 );\\n\\tM = ceil( M * 255.0 ) / 255.0;\\n\\treturn vec4( value.rgb / ( M * maxRange ), M );\\n}\\nvec4 RGBDToLinear( in vec4 value, in float maxRange ) {\\n\\treturn vec4( value.rgb * ( ( maxRange / 255.0 ) / value.a ), 1.0 );\\n}\\nvec4 LinearToRGBD( in vec4 value, in float maxRange ) {\\n\\tfloat maxRGB = max( value.r, max( value.g, value.b ) );\\n\\tfloat D = max( maxRange / maxRGB, 1.0 );\\n\\tD = min( floor( D ) / 255.0, 1.0 );\\n\\treturn vec4( value.rgb * ( D * ( 255.0 / maxRange ) ), D );\\n}\\nconst mat3 cLogLuvM = mat3( 0.2209, 0.3390, 0.4184, 0.1138, 0.6780, 0.7319, 0.0102, 0.1130, 0.2969 );\\nvec4 LinearToLogLuv( in vec4 value ) {\\n\\tvec3 Xp_Y_XYZp = cLogLuvM * value.rgb;\\n\\tXp_Y_XYZp = max( Xp_Y_XYZp, vec3( 1e-6, 1e-6, 1e-6 ) );\\n\\tvec4 vResult;\\n\\tvResult.xy = Xp_Y_XYZp.xy / Xp_Y_XYZp.z;\\n\\tfloat Le = 2.0 * log2(Xp_Y_XYZp.y) + 127.0;\\n\\tvResult.w = fract( Le );\\n\\tvResult.z = ( Le - ( floor( vResult.w * 255.0 ) ) / 255.0 ) / 255.0;\\n\\treturn vResult;\\n}\\nconst mat3 cLogLuvInverseM = mat3( 6.0014, -2.7008, -1.7996, -1.3320, 3.1029, -5.7721, 0.3008, -1.0882, 5.6268 );\\nvec4 LogLuvToLinear( in vec4 value ) {\\n\\tfloat Le = value.z * 255.0 + value.w;\\n\\tvec3 Xp_Y_XYZp;\\n\\tXp_Y_XYZp.y = exp2( ( Le - 127.0 ) / 2.0 );\\n\\tXp_Y_XYZp.z = Xp_Y_XYZp.y / value.y;\\n\\tXp_Y_XYZp.x = value.x * Xp_Y_XYZp.z;\\n\\tvec3 vRGB = cLogLuvInverseM * Xp_Y_XYZp.rgb;\\n\\treturn vec4( max( vRGB, 0.0 ), 1.0 );\\n}\";\n\nvar envmap_fragment = \"#ifdef USE_ENVMAP\\n\\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\\n\\t\\tvec3 cameraToVertex = normalize( vWorldPosition - cameraPosition );\\n\\t\\tvec3 worldNormal = inverseTransformDirection( normal, viewMatrix );\\n\\t\\t#ifdef ENVMAP_MODE_REFLECTION\\n\\t\\t\\tvec3 reflectVec = reflect( cameraToVertex, worldNormal );\\n\\t\\t#else\\n\\t\\t\\tvec3 reflectVec = refract( cameraToVertex, worldNormal, refractionRatio );\\n\\t\\t#endif\\n\\t#else\\n\\t\\tvec3 reflectVec = vReflect;\\n\\t#endif\\n\\t#ifdef ENVMAP_TYPE_CUBE\\n\\t\\tvec4 envColor = textureCube( envMap, vec3( flipEnvMap * reflectVec.x, reflectVec.yz ) );\\n\\t#elif defined( ENVMAP_TYPE_EQUIREC )\\n\\t\\tvec2 sampleUV;\\n\\t\\treflectVec = normalize( reflectVec );\\n\\t\\tsampleUV.y = asin( clamp( reflectVec.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\\n\\t\\tsampleUV.x = atan( reflectVec.z, reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\\n\\t\\tvec4 envColor = texture2D( envMap, sampleUV );\\n\\t#elif defined( ENVMAP_TYPE_SPHERE )\\n\\t\\treflectVec = normalize( reflectVec );\\n\\t\\tvec3 reflectView = normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0, 0.0, 1.0 ) );\\n\\t\\tvec4 envColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5 );\\n\\t#else\\n\\t\\tvec4 envColor = vec4( 0.0 );\\n\\t#endif\\n\\tenvColor = envMapTexelToLinear( envColor );\\n\\t#ifdef ENVMAP_BLENDING_MULTIPLY\\n\\t\\toutgoingLight = mix( outgoingLight, outgoingLight * envColor.xyz, specularStrength * reflectivity );\\n\\t#elif defined( ENVMAP_BLENDING_MIX )\\n\\t\\toutgoingLight = mix( outgoingLight, envColor.xyz, specularStrength * reflectivity );\\n\\t#elif defined( ENVMAP_BLENDING_ADD )\\n\\t\\toutgoingLight += envColor.xyz * specularStrength * reflectivity;\\n\\t#endif\\n#endif\";\n\nvar envmap_pars_fragment = \"#if defined( USE_ENVMAP ) || defined( PHYSICAL )\\n\\tuniform float reflectivity;\\n\\tuniform float envMapIntensity;\\n#endif\\n#ifdef USE_ENVMAP\\n\\t#if ! defined( PHYSICAL ) && ( defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) )\\n\\t\\tvarying vec3 vWorldPosition;\\n\\t#endif\\n\\t#ifdef ENVMAP_TYPE_CUBE\\n\\t\\tuniform samplerCube envMap;\\n\\t#else\\n\\t\\tuniform sampler2D envMap;\\n\\t#endif\\n\\tuniform float flipEnvMap;\\n\\tuniform int maxMipLevel;\\n\\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG ) || defined( PHYSICAL )\\n\\t\\tuniform float refractionRatio;\\n\\t#else\\n\\t\\tvarying vec3 vReflect;\\n\\t#endif\\n#endif\";\n\nvar envmap_pars_vertex = \"#ifdef USE_ENVMAP\\n\\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\\n\\t\\tvarying vec3 vWorldPosition;\\n\\t#else\\n\\t\\tvarying vec3 vReflect;\\n\\t\\tuniform float refractionRatio;\\n\\t#endif\\n#endif\";\n\nvar envmap_vertex = \"#ifdef USE_ENVMAP\\n\\t#if defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( PHONG )\\n\\t\\tvWorldPosition = worldPosition.xyz;\\n\\t#else\\n\\t\\tvec3 cameraToVertex = normalize( worldPosition.xyz - cameraPosition );\\n\\t\\tvec3 worldNormal = inverseTransformDirection( transformedNormal, viewMatrix );\\n\\t\\t#ifdef ENVMAP_MODE_REFLECTION\\n\\t\\t\\tvReflect = reflect( cameraToVertex, worldNormal );\\n\\t\\t#else\\n\\t\\t\\tvReflect = refract( cameraToVertex, worldNormal, refractionRatio );\\n\\t\\t#endif\\n\\t#endif\\n#endif\";\n\nvar fog_vertex = \"#ifdef USE_FOG\\n\\tfogDepth = -mvPosition.z;\\n#endif\";\n\nvar fog_pars_vertex = \"#ifdef USE_FOG\\n\\tvarying float fogDepth;\\n#endif\";\n\nvar fog_fragment = \"#ifdef USE_FOG\\n\\t#ifdef FOG_EXP2\\n\\t\\tfloat fogFactor = whiteCompliment( exp2( - fogDensity * fogDensity * fogDepth * fogDepth * LOG2 ) );\\n\\t#else\\n\\t\\tfloat fogFactor = smoothstep( fogNear, fogFar, fogDepth );\\n\\t#endif\\n\\tgl_FragColor.rgb = mix( gl_FragColor.rgb, fogColor, fogFactor );\\n#endif\";\n\nvar fog_pars_fragment = \"#ifdef USE_FOG\\n\\tuniform vec3 fogColor;\\n\\tvarying float fogDepth;\\n\\t#ifdef FOG_EXP2\\n\\t\\tuniform float fogDensity;\\n\\t#else\\n\\t\\tuniform float fogNear;\\n\\t\\tuniform float fogFar;\\n\\t#endif\\n#endif\";\n\nvar gradientmap_pars_fragment = \"#ifdef TOON\\n\\tuniform sampler2D gradientMap;\\n\\tvec3 getGradientIrradiance( vec3 normal, vec3 lightDirection ) {\\n\\t\\tfloat dotNL = dot( normal, lightDirection );\\n\\t\\tvec2 coord = vec2( dotNL * 0.5 + 0.5, 0.0 );\\n\\t\\t#ifdef USE_GRADIENTMAP\\n\\t\\t\\treturn texture2D( gradientMap, coord ).rgb;\\n\\t\\t#else\\n\\t\\t\\treturn ( coord.x < 0.7 ) ? vec3( 0.7 ) : vec3( 1.0 );\\n\\t\\t#endif\\n\\t}\\n#endif\";\n\nvar lightmap_fragment = \"#ifdef USE_LIGHTMAP\\n\\treflectedLight.indirectDiffuse += PI * texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\\n#endif\";\n\nvar lightmap_pars_fragment = \"#ifdef USE_LIGHTMAP\\n\\tuniform sampler2D lightMap;\\n\\tuniform float lightMapIntensity;\\n#endif\";\n\nvar lights_lambert_vertex = \"vec3 diffuse = vec3( 1.0 );\\nGeometricContext geometry;\\ngeometry.position = mvPosition.xyz;\\ngeometry.normal = normalize( transformedNormal );\\ngeometry.viewDir = normalize( -mvPosition.xyz );\\nGeometricContext backGeometry;\\nbackGeometry.position = geometry.position;\\nbackGeometry.normal = -geometry.normal;\\nbackGeometry.viewDir = geometry.viewDir;\\nvLightFront = vec3( 0.0 );\\nvIndirectFront = vec3( 0.0 );\\n#ifdef DOUBLE_SIDED\\n\\tvLightBack = vec3( 0.0 );\\n\\tvIndirectBack = vec3( 0.0 );\\n#endif\\nIncidentLight directLight;\\nfloat dotNL;\\nvec3 directLightColor_Diffuse;\\n#if NUM_POINT_LIGHTS > 0\\n\\t#pragma unroll_loop\\n\\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\\n\\t\\tgetPointDirectLightIrradiance( pointLights[ i ], geometry, directLight );\\n\\t\\tdotNL = dot( geometry.normal, directLight.direction );\\n\\t\\tdirectLightColor_Diffuse = PI * directLight.color;\\n\\t\\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\\n\\t\\t#ifdef DOUBLE_SIDED\\n\\t\\t\\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\\n\\t\\t#endif\\n\\t}\\n#endif\\n#if NUM_SPOT_LIGHTS > 0\\n\\t#pragma unroll_loop\\n\\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\\n\\t\\tgetSpotDirectLightIrradiance( spotLights[ i ], geometry, directLight );\\n\\t\\tdotNL = dot( geometry.normal, directLight.direction );\\n\\t\\tdirectLightColor_Diffuse = PI * directLight.color;\\n\\t\\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\\n\\t\\t#ifdef DOUBLE_SIDED\\n\\t\\t\\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\\n\\t\\t#endif\\n\\t}\\n#endif\\n#if NUM_DIR_LIGHTS > 0\\n\\t#pragma unroll_loop\\n\\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\\n\\t\\tgetDirectionalDirectLightIrradiance( directionalLights[ i ], geometry, directLight );\\n\\t\\tdotNL = dot( geometry.normal, directLight.direction );\\n\\t\\tdirectLightColor_Diffuse = PI * directLight.color;\\n\\t\\tvLightFront += saturate( dotNL ) * directLightColor_Diffuse;\\n\\t\\t#ifdef DOUBLE_SIDED\\n\\t\\t\\tvLightBack += saturate( -dotNL ) * directLightColor_Diffuse;\\n\\t\\t#endif\\n\\t}\\n#endif\\n#if NUM_HEMI_LIGHTS > 0\\n\\t#pragma unroll_loop\\n\\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\\n\\t\\tvIndirectFront += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\\n\\t\\t#ifdef DOUBLE_SIDED\\n\\t\\t\\tvIndirectBack += getHemisphereLightIrradiance( hemisphereLights[ i ], backGeometry );\\n\\t\\t#endif\\n\\t}\\n#endif\";\n\nvar lights_pars_begin = \"uniform vec3 ambientLightColor;\\nuniform vec3 lightProbe[ 9 ];\\nvec3 shGetIrradianceAt( in vec3 normal, in vec3 shCoefficients[ 9 ] ) {\\n\\tfloat x = normal.x, y = normal.y, z = normal.z;\\n\\tvec3 result = shCoefficients[ 0 ] * 0.886227;\\n\\tresult += shCoefficients[ 1 ] * 2.0 * 0.511664 * y;\\n\\tresult += shCoefficients[ 2 ] * 2.0 * 0.511664 * z;\\n\\tresult += shCoefficients[ 3 ] * 2.0 * 0.511664 * x;\\n\\tresult += shCoefficients[ 4 ] * 2.0 * 0.429043 * x * y;\\n\\tresult += shCoefficients[ 5 ] * 2.0 * 0.429043 * y * z;\\n\\tresult += shCoefficients[ 6 ] * ( 0.743125 * z * z - 0.247708 );\\n\\tresult += shCoefficients[ 7 ] * 2.0 * 0.429043 * x * z;\\n\\tresult += shCoefficients[ 8 ] * 0.429043 * ( x * x - y * y );\\n\\treturn result;\\n}\\nvec3 getLightProbeIrradiance( const in vec3 lightProbe[ 9 ], const in GeometricContext geometry ) {\\n\\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\\n\\tvec3 irradiance = shGetIrradianceAt( worldNormal, lightProbe );\\n\\treturn irradiance;\\n}\\nvec3 getAmbientLightIrradiance( const in vec3 ambientLightColor ) {\\n\\tvec3 irradiance = ambientLightColor;\\n\\t#ifndef PHYSICALLY_CORRECT_LIGHTS\\n\\t\\tirradiance *= PI;\\n\\t#endif\\n\\treturn irradiance;\\n}\\n#if NUM_DIR_LIGHTS > 0\\n\\tstruct DirectionalLight {\\n\\t\\tvec3 direction;\\n\\t\\tvec3 color;\\n\\t\\tint shadow;\\n\\t\\tfloat shadowBias;\\n\\t\\tfloat shadowRadius;\\n\\t\\tvec2 shadowMapSize;\\n\\t};\\n\\tuniform DirectionalLight directionalLights[ NUM_DIR_LIGHTS ];\\n\\tvoid getDirectionalDirectLightIrradiance( const in DirectionalLight directionalLight, const in GeometricContext geometry, out IncidentLight directLight ) {\\n\\t\\tdirectLight.color = directionalLight.color;\\n\\t\\tdirectLight.direction = directionalLight.direction;\\n\\t\\tdirectLight.visible = true;\\n\\t}\\n#endif\\n#if NUM_POINT_LIGHTS > 0\\n\\tstruct PointLight {\\n\\t\\tvec3 position;\\n\\t\\tvec3 color;\\n\\t\\tfloat distance;\\n\\t\\tfloat decay;\\n\\t\\tint shadow;\\n\\t\\tfloat shadowBias;\\n\\t\\tfloat shadowRadius;\\n\\t\\tvec2 shadowMapSize;\\n\\t\\tfloat shadowCameraNear;\\n\\t\\tfloat shadowCameraFar;\\n\\t};\\n\\tuniform PointLight pointLights[ NUM_POINT_LIGHTS ];\\n\\tvoid getPointDirectLightIrradiance( const in PointLight pointLight, const in GeometricContext geometry, out IncidentLight directLight ) {\\n\\t\\tvec3 lVector = pointLight.position - geometry.position;\\n\\t\\tdirectLight.direction = normalize( lVector );\\n\\t\\tfloat lightDistance = length( lVector );\\n\\t\\tdirectLight.color = pointLight.color;\\n\\t\\tdirectLight.color *= punctualLightIntensityToIrradianceFactor( lightDistance, pointLight.distance, pointLight.decay );\\n\\t\\tdirectLight.visible = ( directLight.color != vec3( 0.0 ) );\\n\\t}\\n#endif\\n#if NUM_SPOT_LIGHTS > 0\\n\\tstruct SpotLight {\\n\\t\\tvec3 position;\\n\\t\\tvec3 direction;\\n\\t\\tvec3 color;\\n\\t\\tfloat distance;\\n\\t\\tfloat decay;\\n\\t\\tfloat coneCos;\\n\\t\\tfloat penumbraCos;\\n\\t\\tint shadow;\\n\\t\\tfloat shadowBias;\\n\\t\\tfloat shadowRadius;\\n\\t\\tvec2 shadowMapSize;\\n\\t};\\n\\tuniform SpotLight spotLights[ NUM_SPOT_LIGHTS ];\\n\\tvoid getSpotDirectLightIrradiance( const in SpotLight spotLight, const in GeometricContext geometry, out IncidentLight directLight ) {\\n\\t\\tvec3 lVector = spotLight.position - geometry.position;\\n\\t\\tdirectLight.direction = normalize( lVector );\\n\\t\\tfloat lightDistance = length( lVector );\\n\\t\\tfloat angleCos = dot( directLight.direction, spotLight.direction );\\n\\t\\tif ( angleCos > spotLight.coneCos ) {\\n\\t\\t\\tfloat spotEffect = smoothstep( spotLight.coneCos, spotLight.penumbraCos, angleCos );\\n\\t\\t\\tdirectLight.color = spotLight.color;\\n\\t\\t\\tdirectLight.color *= spotEffect * punctualLightIntensityToIrradianceFactor( lightDistance, spotLight.distance, spotLight.decay );\\n\\t\\t\\tdirectLight.visible = true;\\n\\t\\t} else {\\n\\t\\t\\tdirectLight.color = vec3( 0.0 );\\n\\t\\t\\tdirectLight.visible = false;\\n\\t\\t}\\n\\t}\\n#endif\\n#if NUM_RECT_AREA_LIGHTS > 0\\n\\tstruct RectAreaLight {\\n\\t\\tvec3 color;\\n\\t\\tvec3 position;\\n\\t\\tvec3 halfWidth;\\n\\t\\tvec3 halfHeight;\\n\\t};\\n\\tuniform sampler2D ltc_1;\\tuniform sampler2D ltc_2;\\n\\tuniform RectAreaLight rectAreaLights[ NUM_RECT_AREA_LIGHTS ];\\n#endif\\n#if NUM_HEMI_LIGHTS > 0\\n\\tstruct HemisphereLight {\\n\\t\\tvec3 direction;\\n\\t\\tvec3 skyColor;\\n\\t\\tvec3 groundColor;\\n\\t};\\n\\tuniform HemisphereLight hemisphereLights[ NUM_HEMI_LIGHTS ];\\n\\tvec3 getHemisphereLightIrradiance( const in HemisphereLight hemiLight, const in GeometricContext geometry ) {\\n\\t\\tfloat dotNL = dot( geometry.normal, hemiLight.direction );\\n\\t\\tfloat hemiDiffuseWeight = 0.5 * dotNL + 0.5;\\n\\t\\tvec3 irradiance = mix( hemiLight.groundColor, hemiLight.skyColor, hemiDiffuseWeight );\\n\\t\\t#ifndef PHYSICALLY_CORRECT_LIGHTS\\n\\t\\t\\tirradiance *= PI;\\n\\t\\t#endif\\n\\t\\treturn irradiance;\\n\\t}\\n#endif\";\n\nvar envmap_physical_pars_fragment = \"#if defined( USE_ENVMAP ) && defined( PHYSICAL )\\n\\tvec3 getLightProbeIndirectIrradiance( const in GeometricContext geometry, const in int maxMIPLevel ) {\\n\\t\\tvec3 worldNormal = inverseTransformDirection( geometry.normal, viewMatrix );\\n\\t\\t#ifdef ENVMAP_TYPE_CUBE\\n\\t\\t\\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\\n\\t\\t\\t#ifdef TEXTURE_LOD_EXT\\n\\t\\t\\t\\tvec4 envMapColor = textureCubeLodEXT( envMap, queryVec, float( maxMIPLevel ) );\\n\\t\\t\\t#else\\n\\t\\t\\t\\tvec4 envMapColor = textureCube( envMap, queryVec, float( maxMIPLevel ) );\\n\\t\\t\\t#endif\\n\\t\\t\\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\\n\\t\\t#elif defined( ENVMAP_TYPE_CUBE_UV )\\n\\t\\t\\tvec3 queryVec = vec3( flipEnvMap * worldNormal.x, worldNormal.yz );\\n\\t\\t\\tvec4 envMapColor = textureCubeUV( envMap, queryVec, 1.0 );\\n\\t\\t#else\\n\\t\\t\\tvec4 envMapColor = vec4( 0.0 );\\n\\t\\t#endif\\n\\t\\treturn PI * envMapColor.rgb * envMapIntensity;\\n\\t}\\n\\tfloat getSpecularMIPLevel( const in float blinnShininessExponent, const in int maxMIPLevel ) {\\n\\t\\tfloat maxMIPLevelScalar = float( maxMIPLevel );\\n\\t\\tfloat desiredMIPLevel = maxMIPLevelScalar + 0.79248 - 0.5 * log2( pow2( blinnShininessExponent ) + 1.0 );\\n\\t\\treturn clamp( desiredMIPLevel, 0.0, maxMIPLevelScalar );\\n\\t}\\n\\tvec3 getLightProbeIndirectRadiance( const in GeometricContext geometry, const in float blinnShininessExponent, const in int maxMIPLevel ) {\\n\\t\\t#ifdef ENVMAP_MODE_REFLECTION\\n\\t\\t\\tvec3 reflectVec = reflect( -geometry.viewDir, geometry.normal );\\n\\t\\t#else\\n\\t\\t\\tvec3 reflectVec = refract( -geometry.viewDir, geometry.normal, refractionRatio );\\n\\t\\t#endif\\n\\t\\treflectVec = inverseTransformDirection( reflectVec, viewMatrix );\\n\\t\\tfloat specularMIPLevel = getSpecularMIPLevel( blinnShininessExponent, maxMIPLevel );\\n\\t\\t#ifdef ENVMAP_TYPE_CUBE\\n\\t\\t\\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\\n\\t\\t\\t#ifdef TEXTURE_LOD_EXT\\n\\t\\t\\t\\tvec4 envMapColor = textureCubeLodEXT( envMap, queryReflectVec, specularMIPLevel );\\n\\t\\t\\t#else\\n\\t\\t\\t\\tvec4 envMapColor = textureCube( envMap, queryReflectVec, specularMIPLevel );\\n\\t\\t\\t#endif\\n\\t\\t\\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\\n\\t\\t#elif defined( ENVMAP_TYPE_CUBE_UV )\\n\\t\\t\\tvec3 queryReflectVec = vec3( flipEnvMap * reflectVec.x, reflectVec.yz );\\n\\t\\t\\tvec4 envMapColor = textureCubeUV( envMap, queryReflectVec, BlinnExponentToGGXRoughness(blinnShininessExponent ));\\n\\t\\t#elif defined( ENVMAP_TYPE_EQUIREC )\\n\\t\\t\\tvec2 sampleUV;\\n\\t\\t\\tsampleUV.y = asin( clamp( reflectVec.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\\n\\t\\t\\tsampleUV.x = atan( reflectVec.z, reflectVec.x ) * RECIPROCAL_PI2 + 0.5;\\n\\t\\t\\t#ifdef TEXTURE_LOD_EXT\\n\\t\\t\\t\\tvec4 envMapColor = texture2DLodEXT( envMap, sampleUV, specularMIPLevel );\\n\\t\\t\\t#else\\n\\t\\t\\t\\tvec4 envMapColor = texture2D( envMap, sampleUV, specularMIPLevel );\\n\\t\\t\\t#endif\\n\\t\\t\\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\\n\\t\\t#elif defined( ENVMAP_TYPE_SPHERE )\\n\\t\\t\\tvec3 reflectView = normalize( ( viewMatrix * vec4( reflectVec, 0.0 ) ).xyz + vec3( 0.0,0.0,1.0 ) );\\n\\t\\t\\t#ifdef TEXTURE_LOD_EXT\\n\\t\\t\\t\\tvec4 envMapColor = texture2DLodEXT( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\\n\\t\\t\\t#else\\n\\t\\t\\t\\tvec4 envMapColor = texture2D( envMap, reflectView.xy * 0.5 + 0.5, specularMIPLevel );\\n\\t\\t\\t#endif\\n\\t\\t\\tenvMapColor.rgb = envMapTexelToLinear( envMapColor ).rgb;\\n\\t\\t#endif\\n\\t\\treturn envMapColor.rgb * envMapIntensity;\\n\\t}\\n#endif\";\n\nvar lights_phong_fragment = \"BlinnPhongMaterial material;\\nmaterial.diffuseColor = diffuseColor.rgb;\\nmaterial.specularColor = specular;\\nmaterial.specularShininess = shininess;\\nmaterial.specularStrength = specularStrength;\";\n\nvar lights_phong_pars_fragment = \"varying vec3 vViewPosition;\\n#ifndef FLAT_SHADED\\n\\tvarying vec3 vNormal;\\n#endif\\nstruct BlinnPhongMaterial {\\n\\tvec3\\tdiffuseColor;\\n\\tvec3\\tspecularColor;\\n\\tfloat\\tspecularShininess;\\n\\tfloat\\tspecularStrength;\\n};\\nvoid RE_Direct_BlinnPhong( const in IncidentLight directLight, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\\n\\t#ifdef TOON\\n\\t\\tvec3 irradiance = getGradientIrradiance( geometry.normal, directLight.direction ) * directLight.color;\\n\\t#else\\n\\t\\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\\n\\t\\tvec3 irradiance = dotNL * directLight.color;\\n\\t#endif\\n\\t#ifndef PHYSICALLY_CORRECT_LIGHTS\\n\\t\\tirradiance *= PI;\\n\\t#endif\\n\\treflectedLight.directDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\\n\\treflectedLight.directSpecular += irradiance * BRDF_Specular_BlinnPhong( directLight, geometry, material.specularColor, material.specularShininess ) * material.specularStrength;\\n}\\nvoid RE_IndirectDiffuse_BlinnPhong( const in vec3 irradiance, const in GeometricContext geometry, const in BlinnPhongMaterial material, inout ReflectedLight reflectedLight ) {\\n\\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\\n}\\n#define RE_Direct\\t\\t\\t\\tRE_Direct_BlinnPhong\\n#define RE_IndirectDiffuse\\t\\tRE_IndirectDiffuse_BlinnPhong\\n#define Material_LightProbeLOD( material )\\t(0)\";\n\nvar lights_physical_fragment = \"PhysicalMaterial material;\\nmaterial.diffuseColor = diffuseColor.rgb * ( 1.0 - metalnessFactor );\\nmaterial.specularRoughness = clamp( roughnessFactor, 0.04, 1.0 );\\n#ifdef STANDARD\\n\\tmaterial.specularColor = mix( vec3( DEFAULT_SPECULAR_COEFFICIENT ), diffuseColor.rgb, metalnessFactor );\\n#else\\n\\tmaterial.specularColor = mix( vec3( MAXIMUM_SPECULAR_COEFFICIENT * pow2( reflectivity ) ), diffuseColor.rgb, metalnessFactor );\\n\\tmaterial.clearCoat = saturate( clearCoat );\\tmaterial.clearCoatRoughness = clamp( clearCoatRoughness, 0.04, 1.0 );\\n#endif\";\n\nvar lights_physical_pars_fragment = \"struct PhysicalMaterial {\\n\\tvec3\\tdiffuseColor;\\n\\tfloat\\tspecularRoughness;\\n\\tvec3\\tspecularColor;\\n\\t#ifndef STANDARD\\n\\t\\tfloat clearCoat;\\n\\t\\tfloat clearCoatRoughness;\\n\\t#endif\\n};\\n#define MAXIMUM_SPECULAR_COEFFICIENT 0.16\\n#define DEFAULT_SPECULAR_COEFFICIENT 0.04\\nfloat clearCoatDHRApprox( const in float roughness, const in float dotNL ) {\\n\\treturn DEFAULT_SPECULAR_COEFFICIENT + ( 1.0 - DEFAULT_SPECULAR_COEFFICIENT ) * ( pow( 1.0 - dotNL, 5.0 ) * pow( 1.0 - roughness, 2.0 ) );\\n}\\n#if NUM_RECT_AREA_LIGHTS > 0\\n\\tvoid RE_Direct_RectArea_Physical( const in RectAreaLight rectAreaLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\\n\\t\\tvec3 normal = geometry.normal;\\n\\t\\tvec3 viewDir = geometry.viewDir;\\n\\t\\tvec3 position = geometry.position;\\n\\t\\tvec3 lightPos = rectAreaLight.position;\\n\\t\\tvec3 halfWidth = rectAreaLight.halfWidth;\\n\\t\\tvec3 halfHeight = rectAreaLight.halfHeight;\\n\\t\\tvec3 lightColor = rectAreaLight.color;\\n\\t\\tfloat roughness = material.specularRoughness;\\n\\t\\tvec3 rectCoords[ 4 ];\\n\\t\\trectCoords[ 0 ] = lightPos + halfWidth - halfHeight;\\t\\trectCoords[ 1 ] = lightPos - halfWidth - halfHeight;\\n\\t\\trectCoords[ 2 ] = lightPos - halfWidth + halfHeight;\\n\\t\\trectCoords[ 3 ] = lightPos + halfWidth + halfHeight;\\n\\t\\tvec2 uv = LTC_Uv( normal, viewDir, roughness );\\n\\t\\tvec4 t1 = texture2D( ltc_1, uv );\\n\\t\\tvec4 t2 = texture2D( ltc_2, uv );\\n\\t\\tmat3 mInv = mat3(\\n\\t\\t\\tvec3( t1.x, 0, t1.y ),\\n\\t\\t\\tvec3( 0, 1, 0 ),\\n\\t\\t\\tvec3( t1.z, 0, t1.w )\\n\\t\\t);\\n\\t\\tvec3 fresnel = ( material.specularColor * t2.x + ( vec3( 1.0 ) - material.specularColor ) * t2.y );\\n\\t\\treflectedLight.directSpecular += lightColor * fresnel * LTC_Evaluate( normal, viewDir, position, mInv, rectCoords );\\n\\t\\treflectedLight.directDiffuse += lightColor * material.diffuseColor * LTC_Evaluate( normal, viewDir, position, mat3( 1.0 ), rectCoords );\\n\\t}\\n#endif\\nvoid RE_Direct_Physical( const in IncidentLight directLight, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\\n\\tfloat dotNL = saturate( dot( geometry.normal, directLight.direction ) );\\n\\tvec3 irradiance = dotNL * directLight.color;\\n\\t#ifndef PHYSICALLY_CORRECT_LIGHTS\\n\\t\\tirradiance *= PI;\\n\\t#endif\\n\\t#ifndef STANDARD\\n\\t\\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\\n\\t#else\\n\\t\\tfloat clearCoatDHR = 0.0;\\n\\t#endif\\n\\treflectedLight.directSpecular += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Specular_GGX( directLight, geometry, material.specularColor, material.specularRoughness );\\n\\treflectedLight.directDiffuse += ( 1.0 - clearCoatDHR ) * irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\\n\\t#ifndef STANDARD\\n\\t\\treflectedLight.directSpecular += irradiance * material.clearCoat * BRDF_Specular_GGX( directLight, geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\\n\\t#endif\\n}\\nvoid RE_IndirectDiffuse_Physical( const in vec3 irradiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight ) {\\n\\t#ifndef ENVMAP_TYPE_CUBE_UV\\n\\t\\treflectedLight.indirectDiffuse += irradiance * BRDF_Diffuse_Lambert( material.diffuseColor );\\n\\t#endif\\n}\\nvoid RE_IndirectSpecular_Physical( const in vec3 radiance, const in vec3 irradiance, const in vec3 clearCoatRadiance, const in GeometricContext geometry, const in PhysicalMaterial material, inout ReflectedLight reflectedLight) {\\n\\t#ifndef STANDARD\\n\\t\\tfloat dotNV = saturate( dot( geometry.normal, geometry.viewDir ) );\\n\\t\\tfloat dotNL = dotNV;\\n\\t\\tfloat clearCoatDHR = material.clearCoat * clearCoatDHRApprox( material.clearCoatRoughness, dotNL );\\n\\t#else\\n\\t\\tfloat clearCoatDHR = 0.0;\\n\\t#endif\\n\\tfloat clearCoatInv = 1.0 - clearCoatDHR;\\n\\t#if defined( ENVMAP_TYPE_CUBE_UV )\\n\\t\\tvec3 singleScattering = vec3( 0.0 );\\n\\t\\tvec3 multiScattering = vec3( 0.0 );\\n\\t\\tvec3 cosineWeightedIrradiance = irradiance * RECIPROCAL_PI;\\n\\t\\tBRDF_Specular_Multiscattering_Environment( geometry, material.specularColor, material.specularRoughness, singleScattering, multiScattering );\\n\\t\\tvec3 diffuse = material.diffuseColor * ( 1.0 - ( singleScattering + multiScattering ) );\\n\\t\\treflectedLight.indirectSpecular += clearCoatInv * radiance * singleScattering;\\n\\t\\treflectedLight.indirectDiffuse += multiScattering * cosineWeightedIrradiance;\\n\\t\\treflectedLight.indirectDiffuse += diffuse * cosineWeightedIrradiance;\\n\\t#else\\n\\t\\treflectedLight.indirectSpecular += clearCoatInv * radiance * BRDF_Specular_GGX_Environment( geometry, material.specularColor, material.specularRoughness );\\n\\t#endif\\n\\t#ifndef STANDARD\\n\\t\\treflectedLight.indirectSpecular += clearCoatRadiance * material.clearCoat * BRDF_Specular_GGX_Environment( geometry, vec3( DEFAULT_SPECULAR_COEFFICIENT ), material.clearCoatRoughness );\\n\\t#endif\\n}\\n#define RE_Direct\\t\\t\\t\\tRE_Direct_Physical\\n#define RE_Direct_RectArea\\t\\tRE_Direct_RectArea_Physical\\n#define RE_IndirectDiffuse\\t\\tRE_IndirectDiffuse_Physical\\n#define RE_IndirectSpecular\\t\\tRE_IndirectSpecular_Physical\\n#define Material_BlinnShininessExponent( material ) GGXRoughnessToBlinnExponent( material.specularRoughness )\\n#define Material_ClearCoat_BlinnShininessExponent( material ) GGXRoughnessToBlinnExponent( material.clearCoatRoughness )\\nfloat computeSpecularOcclusion( const in float dotNV, const in float ambientOcclusion, const in float roughness ) {\\n\\treturn saturate( pow( dotNV + ambientOcclusion, exp2( - 16.0 * roughness - 1.0 ) ) - 1.0 + ambientOcclusion );\\n}\";\n\nvar lights_fragment_begin = \"\\nGeometricContext geometry;\\ngeometry.position = - vViewPosition;\\ngeometry.normal = normal;\\ngeometry.viewDir = normalize( vViewPosition );\\nIncidentLight directLight;\\n#if ( NUM_POINT_LIGHTS > 0 ) && defined( RE_Direct )\\n\\tPointLight pointLight;\\n\\t#pragma unroll_loop\\n\\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\\n\\t\\tpointLight = pointLights[ i ];\\n\\t\\tgetPointDirectLightIrradiance( pointLight, geometry, directLight );\\n\\t\\t#ifdef USE_SHADOWMAP\\n\\t\\tdirectLight.color *= all( bvec2( pointLight.shadow, directLight.visible ) ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\\n\\t\\t#endif\\n\\t\\tRE_Direct( directLight, geometry, material, reflectedLight );\\n\\t}\\n#endif\\n#if ( NUM_SPOT_LIGHTS > 0 ) && defined( RE_Direct )\\n\\tSpotLight spotLight;\\n\\t#pragma unroll_loop\\n\\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\\n\\t\\tspotLight = spotLights[ i ];\\n\\t\\tgetSpotDirectLightIrradiance( spotLight, geometry, directLight );\\n\\t\\t#ifdef USE_SHADOWMAP\\n\\t\\tdirectLight.color *= all( bvec2( spotLight.shadow, directLight.visible ) ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\\n\\t\\t#endif\\n\\t\\tRE_Direct( directLight, geometry, material, reflectedLight );\\n\\t}\\n#endif\\n#if ( NUM_DIR_LIGHTS > 0 ) && defined( RE_Direct )\\n\\tDirectionalLight directionalLight;\\n\\t#pragma unroll_loop\\n\\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\\n\\t\\tdirectionalLight = directionalLights[ i ];\\n\\t\\tgetDirectionalDirectLightIrradiance( directionalLight, geometry, directLight );\\n\\t\\t#ifdef USE_SHADOWMAP\\n\\t\\tdirectLight.color *= all( bvec2( directionalLight.shadow, directLight.visible ) ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\\n\\t\\t#endif\\n\\t\\tRE_Direct( directLight, geometry, material, reflectedLight );\\n\\t}\\n#endif\\n#if ( NUM_RECT_AREA_LIGHTS > 0 ) && defined( RE_Direct_RectArea )\\n\\tRectAreaLight rectAreaLight;\\n\\t#pragma unroll_loop\\n\\tfor ( int i = 0; i < NUM_RECT_AREA_LIGHTS; i ++ ) {\\n\\t\\trectAreaLight = rectAreaLights[ i ];\\n\\t\\tRE_Direct_RectArea( rectAreaLight, geometry, material, reflectedLight );\\n\\t}\\n#endif\\n#if defined( RE_IndirectDiffuse )\\n\\tvec3 irradiance = getAmbientLightIrradiance( ambientLightColor );\\n\\tirradiance += getLightProbeIrradiance( lightProbe, geometry );\\n\\t#if ( NUM_HEMI_LIGHTS > 0 )\\n\\t\\t#pragma unroll_loop\\n\\t\\tfor ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {\\n\\t\\t\\tirradiance += getHemisphereLightIrradiance( hemisphereLights[ i ], geometry );\\n\\t\\t}\\n\\t#endif\\n#endif\\n#if defined( RE_IndirectSpecular )\\n\\tvec3 radiance = vec3( 0.0 );\\n\\tvec3 clearCoatRadiance = vec3( 0.0 );\\n#endif\";\n\nvar lights_fragment_maps = \"#if defined( RE_IndirectDiffuse )\\n\\t#ifdef USE_LIGHTMAP\\n\\t\\tvec3 lightMapIrradiance = texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\\n\\t\\t#ifndef PHYSICALLY_CORRECT_LIGHTS\\n\\t\\t\\tlightMapIrradiance *= PI;\\n\\t\\t#endif\\n\\t\\tirradiance += lightMapIrradiance;\\n\\t#endif\\n\\t#if defined( USE_ENVMAP ) && defined( PHYSICAL ) && defined( ENVMAP_TYPE_CUBE_UV )\\n\\t\\tirradiance += getLightProbeIndirectIrradiance( geometry, maxMipLevel );\\n\\t#endif\\n#endif\\n#if defined( USE_ENVMAP ) && defined( RE_IndirectSpecular )\\n\\tradiance += getLightProbeIndirectRadiance( geometry, Material_BlinnShininessExponent( material ), maxMipLevel );\\n\\t#ifndef STANDARD\\n\\t\\tclearCoatRadiance += getLightProbeIndirectRadiance( geometry, Material_ClearCoat_BlinnShininessExponent( material ), maxMipLevel );\\n\\t#endif\\n#endif\";\n\nvar lights_fragment_end = \"#if defined( RE_IndirectDiffuse )\\n\\tRE_IndirectDiffuse( irradiance, geometry, material, reflectedLight );\\n#endif\\n#if defined( RE_IndirectSpecular )\\n\\tRE_IndirectSpecular( radiance, irradiance, clearCoatRadiance, geometry, material, reflectedLight );\\n#endif\";\n\nvar logdepthbuf_fragment = \"#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\\n\\tgl_FragDepthEXT = log2( vFragDepth ) * logDepthBufFC * 0.5;\\n#endif\";\n\nvar logdepthbuf_pars_fragment = \"#if defined( USE_LOGDEPTHBUF ) && defined( USE_LOGDEPTHBUF_EXT )\\n\\tuniform float logDepthBufFC;\\n\\tvarying float vFragDepth;\\n#endif\";\n\nvar logdepthbuf_pars_vertex = \"#ifdef USE_LOGDEPTHBUF\\n\\t#ifdef USE_LOGDEPTHBUF_EXT\\n\\t\\tvarying float vFragDepth;\\n\\t#else\\n\\t\\tuniform float logDepthBufFC;\\n\\t#endif\\n#endif\";\n\nvar logdepthbuf_vertex = \"#ifdef USE_LOGDEPTHBUF\\n\\t#ifdef USE_LOGDEPTHBUF_EXT\\n\\t\\tvFragDepth = 1.0 + gl_Position.w;\\n\\t#else\\n\\t\\tgl_Position.z = log2( max( EPSILON, gl_Position.w + 1.0 ) ) * logDepthBufFC - 1.0;\\n\\t\\tgl_Position.z *= gl_Position.w;\\n\\t#endif\\n#endif\";\n\nvar map_fragment = \"#ifdef USE_MAP\\n\\tvec4 texelColor = texture2D( map, vUv );\\n\\ttexelColor = mapTexelToLinear( texelColor );\\n\\tdiffuseColor *= texelColor;\\n#endif\";\n\nvar map_pars_fragment = \"#ifdef USE_MAP\\n\\tuniform sampler2D map;\\n#endif\";\n\nvar map_particle_fragment = \"#ifdef USE_MAP\\n\\tvec2 uv = ( uvTransform * vec3( gl_PointCoord.x, 1.0 - gl_PointCoord.y, 1 ) ).xy;\\n\\tvec4 mapTexel = texture2D( map, uv );\\n\\tdiffuseColor *= mapTexelToLinear( mapTexel );\\n#endif\";\n\nvar map_particle_pars_fragment = \"#ifdef USE_MAP\\n\\tuniform mat3 uvTransform;\\n\\tuniform sampler2D map;\\n#endif\";\n\nvar metalnessmap_fragment = \"float metalnessFactor = metalness;\\n#ifdef USE_METALNESSMAP\\n\\tvec4 texelMetalness = texture2D( metalnessMap, vUv );\\n\\tmetalnessFactor *= texelMetalness.b;\\n#endif\";\n\nvar metalnessmap_pars_fragment = \"#ifdef USE_METALNESSMAP\\n\\tuniform sampler2D metalnessMap;\\n#endif\";\n\nvar morphnormal_vertex = \"#ifdef USE_MORPHNORMALS\\n\\tobjectNormal += ( morphNormal0 - normal ) * morphTargetInfluences[ 0 ];\\n\\tobjectNormal += ( morphNormal1 - normal ) * morphTargetInfluences[ 1 ];\\n\\tobjectNormal += ( morphNormal2 - normal ) * morphTargetInfluences[ 2 ];\\n\\tobjectNormal += ( morphNormal3 - normal ) * morphTargetInfluences[ 3 ];\\n#endif\";\n\nvar morphtarget_pars_vertex = \"#ifdef USE_MORPHTARGETS\\n\\t#ifndef USE_MORPHNORMALS\\n\\tuniform float morphTargetInfluences[ 8 ];\\n\\t#else\\n\\tuniform float morphTargetInfluences[ 4 ];\\n\\t#endif\\n#endif\";\n\nvar morphtarget_vertex = \"#ifdef USE_MORPHTARGETS\\n\\ttransformed += ( morphTarget0 - position ) * morphTargetInfluences[ 0 ];\\n\\ttransformed += ( morphTarget1 - position ) * morphTargetInfluences[ 1 ];\\n\\ttransformed += ( morphTarget2 - position ) * morphTargetInfluences[ 2 ];\\n\\ttransformed += ( morphTarget3 - position ) * morphTargetInfluences[ 3 ];\\n\\t#ifndef USE_MORPHNORMALS\\n\\ttransformed += ( morphTarget4 - position ) * morphTargetInfluences[ 4 ];\\n\\ttransformed += ( morphTarget5 - position ) * morphTargetInfluences[ 5 ];\\n\\ttransformed += ( morphTarget6 - position ) * morphTargetInfluences[ 6 ];\\n\\ttransformed += ( morphTarget7 - position ) * morphTargetInfluences[ 7 ];\\n\\t#endif\\n#endif\";\n\nvar normal_fragment_begin = \"#ifdef FLAT_SHADED\\n\\tvec3 fdx = vec3( dFdx( vViewPosition.x ), dFdx( vViewPosition.y ), dFdx( vViewPosition.z ) );\\n\\tvec3 fdy = vec3( dFdy( vViewPosition.x ), dFdy( vViewPosition.y ), dFdy( vViewPosition.z ) );\\n\\tvec3 normal = normalize( cross( fdx, fdy ) );\\n#else\\n\\tvec3 normal = normalize( vNormal );\\n\\t#ifdef DOUBLE_SIDED\\n\\t\\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\\n\\t#endif\\n\\t#ifdef USE_TANGENT\\n\\t\\tvec3 tangent = normalize( vTangent );\\n\\t\\tvec3 bitangent = normalize( vBitangent );\\n\\t\\t#ifdef DOUBLE_SIDED\\n\\t\\t\\ttangent = tangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\\n\\t\\t\\tbitangent = bitangent * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\\n\\t\\t#endif\\n\\t#endif\\n#endif\";\n\nvar normal_fragment_maps = \"#ifdef USE_NORMALMAP\\n\\t#ifdef OBJECTSPACE_NORMALMAP\\n\\t\\tnormal = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\\n\\t\\t#ifdef FLIP_SIDED\\n\\t\\t\\tnormal = - normal;\\n\\t\\t#endif\\n\\t\\t#ifdef DOUBLE_SIDED\\n\\t\\t\\tnormal = normal * ( float( gl_FrontFacing ) * 2.0 - 1.0 );\\n\\t\\t#endif\\n\\t\\tnormal = normalize( normalMatrix * normal );\\n\\t#else\\n\\t\\t#ifdef USE_TANGENT\\n\\t\\t\\tmat3 vTBN = mat3( tangent, bitangent, normal );\\n\\t\\t\\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\\n\\t\\t\\tmapN.xy = normalScale * mapN.xy;\\n\\t\\t\\tnormal = normalize( vTBN * mapN );\\n\\t\\t#else\\n\\t\\t\\tnormal = perturbNormal2Arb( -vViewPosition, normal );\\n\\t\\t#endif\\n\\t#endif\\n#elif defined( USE_BUMPMAP )\\n\\tnormal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );\\n#endif\";\n\nvar normalmap_pars_fragment = \"#ifdef USE_NORMALMAP\\n\\tuniform sampler2D normalMap;\\n\\tuniform vec2 normalScale;\\n\\t#ifdef OBJECTSPACE_NORMALMAP\\n\\t\\tuniform mat3 normalMatrix;\\n\\t#else\\n\\t\\tvec3 perturbNormal2Arb( vec3 eye_pos, vec3 surf_norm ) {\\n\\t\\t\\tvec3 q0 = vec3( dFdx( eye_pos.x ), dFdx( eye_pos.y ), dFdx( eye_pos.z ) );\\n\\t\\t\\tvec3 q1 = vec3( dFdy( eye_pos.x ), dFdy( eye_pos.y ), dFdy( eye_pos.z ) );\\n\\t\\t\\tvec2 st0 = dFdx( vUv.st );\\n\\t\\t\\tvec2 st1 = dFdy( vUv.st );\\n\\t\\t\\tfloat scale = sign( st1.t * st0.s - st0.t * st1.s );\\n\\t\\t\\tvec3 S = normalize( ( q0 * st1.t - q1 * st0.t ) * scale );\\n\\t\\t\\tvec3 T = normalize( ( - q0 * st1.s + q1 * st0.s ) * scale );\\n\\t\\t\\tvec3 N = normalize( surf_norm );\\n\\t\\t\\tmat3 tsn = mat3( S, T, N );\\n\\t\\t\\tvec3 mapN = texture2D( normalMap, vUv ).xyz * 2.0 - 1.0;\\n\\t\\t\\tmapN.xy *= normalScale;\\n\\t\\t\\tmapN.xy *= ( float( gl_FrontFacing ) * 2.0 - 1.0 );\\n\\t\\t\\treturn normalize( tsn * mapN );\\n\\t\\t}\\n\\t#endif\\n#endif\";\n\nvar packing = \"vec3 packNormalToRGB( const in vec3 normal ) {\\n\\treturn normalize( normal ) * 0.5 + 0.5;\\n}\\nvec3 unpackRGBToNormal( const in vec3 rgb ) {\\n\\treturn 2.0 * rgb.xyz - 1.0;\\n}\\nconst float PackUpscale = 256. / 255.;const float UnpackDownscale = 255. / 256.;\\nconst vec3 PackFactors = vec3( 256. * 256. * 256., 256. * 256., 256. );\\nconst vec4 UnpackFactors = UnpackDownscale / vec4( PackFactors, 1. );\\nconst float ShiftRight8 = 1. / 256.;\\nvec4 packDepthToRGBA( const in float v ) {\\n\\tvec4 r = vec4( fract( v * PackFactors ), v );\\n\\tr.yzw -= r.xyz * ShiftRight8;\\treturn r * PackUpscale;\\n}\\nfloat unpackRGBAToDepth( const in vec4 v ) {\\n\\treturn dot( v, UnpackFactors );\\n}\\nfloat viewZToOrthographicDepth( const in float viewZ, const in float near, const in float far ) {\\n\\treturn ( viewZ + near ) / ( near - far );\\n}\\nfloat orthographicDepthToViewZ( const in float linearClipZ, const in float near, const in float far ) {\\n\\treturn linearClipZ * ( near - far ) - near;\\n}\\nfloat viewZToPerspectiveDepth( const in float viewZ, const in float near, const in float far ) {\\n\\treturn (( near + viewZ ) * far ) / (( far - near ) * viewZ );\\n}\\nfloat perspectiveDepthToViewZ( const in float invClipZ, const in float near, const in float far ) {\\n\\treturn ( near * far ) / ( ( far - near ) * invClipZ - far );\\n}\";\n\nvar premultiplied_alpha_fragment = \"#ifdef PREMULTIPLIED_ALPHA\\n\\tgl_FragColor.rgb *= gl_FragColor.a;\\n#endif\";\n\nvar project_vertex = \"vec4 mvPosition = modelViewMatrix * vec4( transformed, 1.0 );\\ngl_Position = projectionMatrix * mvPosition;\";\n\nvar dithering_fragment = \"#if defined( DITHERING )\\n\\tgl_FragColor.rgb = dithering( gl_FragColor.rgb );\\n#endif\";\n\nvar dithering_pars_fragment = \"#if defined( DITHERING )\\n\\tvec3 dithering( vec3 color ) {\\n\\t\\tfloat grid_position = rand( gl_FragCoord.xy );\\n\\t\\tvec3 dither_shift_RGB = vec3( 0.25 / 255.0, -0.25 / 255.0, 0.25 / 255.0 );\\n\\t\\tdither_shift_RGB = mix( 2.0 * dither_shift_RGB, -2.0 * dither_shift_RGB, grid_position );\\n\\t\\treturn color + dither_shift_RGB;\\n\\t}\\n#endif\";\n\nvar roughnessmap_fragment = \"float roughnessFactor = roughness;\\n#ifdef USE_ROUGHNESSMAP\\n\\tvec4 texelRoughness = texture2D( roughnessMap, vUv );\\n\\troughnessFactor *= texelRoughness.g;\\n#endif\";\n\nvar roughnessmap_pars_fragment = \"#ifdef USE_ROUGHNESSMAP\\n\\tuniform sampler2D roughnessMap;\\n#endif\";\n\nvar shadowmap_pars_fragment = \"#ifdef USE_SHADOWMAP\\n\\t#if NUM_DIR_LIGHTS > 0\\n\\t\\tuniform sampler2D directionalShadowMap[ NUM_DIR_LIGHTS ];\\n\\t\\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\\n\\t#endif\\n\\t#if NUM_SPOT_LIGHTS > 0\\n\\t\\tuniform sampler2D spotShadowMap[ NUM_SPOT_LIGHTS ];\\n\\t\\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\\n\\t#endif\\n\\t#if NUM_POINT_LIGHTS > 0\\n\\t\\tuniform sampler2D pointShadowMap[ NUM_POINT_LIGHTS ];\\n\\t\\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\\n\\t#endif\\n\\tfloat texture2DCompare( sampler2D depths, vec2 uv, float compare ) {\\n\\t\\treturn step( compare, unpackRGBAToDepth( texture2D( depths, uv ) ) );\\n\\t}\\n\\tfloat texture2DShadowLerp( sampler2D depths, vec2 size, vec2 uv, float compare ) {\\n\\t\\tconst vec2 offset = vec2( 0.0, 1.0 );\\n\\t\\tvec2 texelSize = vec2( 1.0 ) / size;\\n\\t\\tvec2 centroidUV = floor( uv * size + 0.5 ) / size;\\n\\t\\tfloat lb = texture2DCompare( depths, centroidUV + texelSize * offset.xx, compare );\\n\\t\\tfloat lt = texture2DCompare( depths, centroidUV + texelSize * offset.xy, compare );\\n\\t\\tfloat rb = texture2DCompare( depths, centroidUV + texelSize * offset.yx, compare );\\n\\t\\tfloat rt = texture2DCompare( depths, centroidUV + texelSize * offset.yy, compare );\\n\\t\\tvec2 f = fract( uv * size + 0.5 );\\n\\t\\tfloat a = mix( lb, lt, f.y );\\n\\t\\tfloat b = mix( rb, rt, f.y );\\n\\t\\tfloat c = mix( a, b, f.x );\\n\\t\\treturn c;\\n\\t}\\n\\tfloat getShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord ) {\\n\\t\\tfloat shadow = 1.0;\\n\\t\\tshadowCoord.xyz /= shadowCoord.w;\\n\\t\\tshadowCoord.z += shadowBias;\\n\\t\\tbvec4 inFrustumVec = bvec4 ( shadowCoord.x >= 0.0, shadowCoord.x <= 1.0, shadowCoord.y >= 0.0, shadowCoord.y <= 1.0 );\\n\\t\\tbool inFrustum = all( inFrustumVec );\\n\\t\\tbvec2 frustumTestVec = bvec2( inFrustum, shadowCoord.z <= 1.0 );\\n\\t\\tbool frustumTest = all( frustumTestVec );\\n\\t\\tif ( frustumTest ) {\\n\\t\\t#if defined( SHADOWMAP_TYPE_PCF )\\n\\t\\t\\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\\n\\t\\t\\tfloat dx0 = - texelSize.x * shadowRadius;\\n\\t\\t\\tfloat dy0 = - texelSize.y * shadowRadius;\\n\\t\\t\\tfloat dx1 = + texelSize.x * shadowRadius;\\n\\t\\t\\tfloat dy1 = + texelSize.y * shadowRadius;\\n\\t\\t\\tshadow = (\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z ) +\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\\n\\t\\t\\t) * ( 1.0 / 9.0 );\\n\\t\\t#elif defined( SHADOWMAP_TYPE_PCF_SOFT )\\n\\t\\t\\tvec2 texelSize = vec2( 1.0 ) / shadowMapSize;\\n\\t\\t\\tfloat dx0 = - texelSize.x * shadowRadius;\\n\\t\\t\\tfloat dy0 = - texelSize.y * shadowRadius;\\n\\t\\t\\tfloat dx1 = + texelSize.x * shadowRadius;\\n\\t\\t\\tfloat dy1 = + texelSize.y * shadowRadius;\\n\\t\\t\\tshadow = (\\n\\t\\t\\t\\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy0 ), shadowCoord.z ) +\\n\\t\\t\\t\\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy0 ), shadowCoord.z ) +\\n\\t\\t\\t\\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy0 ), shadowCoord.z ) +\\n\\t\\t\\t\\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, 0.0 ), shadowCoord.z ) +\\n\\t\\t\\t\\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy, shadowCoord.z ) +\\n\\t\\t\\t\\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, 0.0 ), shadowCoord.z ) +\\n\\t\\t\\t\\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx0, dy1 ), shadowCoord.z ) +\\n\\t\\t\\t\\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( 0.0, dy1 ), shadowCoord.z ) +\\n\\t\\t\\t\\ttexture2DShadowLerp( shadowMap, shadowMapSize, shadowCoord.xy + vec2( dx1, dy1 ), shadowCoord.z )\\n\\t\\t\\t) * ( 1.0 / 9.0 );\\n\\t\\t#else\\n\\t\\t\\tshadow = texture2DCompare( shadowMap, shadowCoord.xy, shadowCoord.z );\\n\\t\\t#endif\\n\\t\\t}\\n\\t\\treturn shadow;\\n\\t}\\n\\tvec2 cubeToUV( vec3 v, float texelSizeY ) {\\n\\t\\tvec3 absV = abs( v );\\n\\t\\tfloat scaleToCube = 1.0 / max( absV.x, max( absV.y, absV.z ) );\\n\\t\\tabsV *= scaleToCube;\\n\\t\\tv *= scaleToCube * ( 1.0 - 2.0 * texelSizeY );\\n\\t\\tvec2 planar = v.xy;\\n\\t\\tfloat almostATexel = 1.5 * texelSizeY;\\n\\t\\tfloat almostOne = 1.0 - almostATexel;\\n\\t\\tif ( absV.z >= almostOne ) {\\n\\t\\t\\tif ( v.z > 0.0 )\\n\\t\\t\\t\\tplanar.x = 4.0 - v.x;\\n\\t\\t} else if ( absV.x >= almostOne ) {\\n\\t\\t\\tfloat signX = sign( v.x );\\n\\t\\t\\tplanar.x = v.z * signX + 2.0 * signX;\\n\\t\\t} else if ( absV.y >= almostOne ) {\\n\\t\\t\\tfloat signY = sign( v.y );\\n\\t\\t\\tplanar.x = v.x + 2.0 * signY + 2.0;\\n\\t\\t\\tplanar.y = v.z * signY - 2.0;\\n\\t\\t}\\n\\t\\treturn vec2( 0.125, 0.25 ) * planar + vec2( 0.375, 0.75 );\\n\\t}\\n\\tfloat getPointShadow( sampler2D shadowMap, vec2 shadowMapSize, float shadowBias, float shadowRadius, vec4 shadowCoord, float shadowCameraNear, float shadowCameraFar ) {\\n\\t\\tvec2 texelSize = vec2( 1.0 ) / ( shadowMapSize * vec2( 4.0, 2.0 ) );\\n\\t\\tvec3 lightToPosition = shadowCoord.xyz;\\n\\t\\tfloat dp = ( length( lightToPosition ) - shadowCameraNear ) / ( shadowCameraFar - shadowCameraNear );\\t\\tdp += shadowBias;\\n\\t\\tvec3 bd3D = normalize( lightToPosition );\\n\\t\\t#if defined( SHADOWMAP_TYPE_PCF ) || defined( SHADOWMAP_TYPE_PCF_SOFT )\\n\\t\\t\\tvec2 offset = vec2( - 1, 1 ) * shadowRadius * texelSize.y;\\n\\t\\t\\treturn (\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyy, texelSize.y ), dp ) +\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyy, texelSize.y ), dp ) +\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xyx, texelSize.y ), dp ) +\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yyx, texelSize.y ), dp ) +\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp ) +\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxy, texelSize.y ), dp ) +\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxy, texelSize.y ), dp ) +\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.xxx, texelSize.y ), dp ) +\\n\\t\\t\\t\\ttexture2DCompare( shadowMap, cubeToUV( bd3D + offset.yxx, texelSize.y ), dp )\\n\\t\\t\\t) * ( 1.0 / 9.0 );\\n\\t\\t#else\\n\\t\\t\\treturn texture2DCompare( shadowMap, cubeToUV( bd3D, texelSize.y ), dp );\\n\\t\\t#endif\\n\\t}\\n#endif\";\n\nvar shadowmap_pars_vertex = \"#ifdef USE_SHADOWMAP\\n\\t#if NUM_DIR_LIGHTS > 0\\n\\t\\tuniform mat4 directionalShadowMatrix[ NUM_DIR_LIGHTS ];\\n\\t\\tvarying vec4 vDirectionalShadowCoord[ NUM_DIR_LIGHTS ];\\n\\t#endif\\n\\t#if NUM_SPOT_LIGHTS > 0\\n\\t\\tuniform mat4 spotShadowMatrix[ NUM_SPOT_LIGHTS ];\\n\\t\\tvarying vec4 vSpotShadowCoord[ NUM_SPOT_LIGHTS ];\\n\\t#endif\\n\\t#if NUM_POINT_LIGHTS > 0\\n\\t\\tuniform mat4 pointShadowMatrix[ NUM_POINT_LIGHTS ];\\n\\t\\tvarying vec4 vPointShadowCoord[ NUM_POINT_LIGHTS ];\\n\\t#endif\\n#endif\";\n\nvar shadowmap_vertex = \"#ifdef USE_SHADOWMAP\\n\\t#if NUM_DIR_LIGHTS > 0\\n\\t#pragma unroll_loop\\n\\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\\n\\t\\tvDirectionalShadowCoord[ i ] = directionalShadowMatrix[ i ] * worldPosition;\\n\\t}\\n\\t#endif\\n\\t#if NUM_SPOT_LIGHTS > 0\\n\\t#pragma unroll_loop\\n\\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\\n\\t\\tvSpotShadowCoord[ i ] = spotShadowMatrix[ i ] * worldPosition;\\n\\t}\\n\\t#endif\\n\\t#if NUM_POINT_LIGHTS > 0\\n\\t#pragma unroll_loop\\n\\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\\n\\t\\tvPointShadowCoord[ i ] = pointShadowMatrix[ i ] * worldPosition;\\n\\t}\\n\\t#endif\\n#endif\";\n\nvar shadowmask_pars_fragment = \"float getShadowMask() {\\n\\tfloat shadow = 1.0;\\n\\t#ifdef USE_SHADOWMAP\\n\\t#if NUM_DIR_LIGHTS > 0\\n\\tDirectionalLight directionalLight;\\n\\t#pragma unroll_loop\\n\\tfor ( int i = 0; i < NUM_DIR_LIGHTS; i ++ ) {\\n\\t\\tdirectionalLight = directionalLights[ i ];\\n\\t\\tshadow *= bool( directionalLight.shadow ) ? getShadow( directionalShadowMap[ i ], directionalLight.shadowMapSize, directionalLight.shadowBias, directionalLight.shadowRadius, vDirectionalShadowCoord[ i ] ) : 1.0;\\n\\t}\\n\\t#endif\\n\\t#if NUM_SPOT_LIGHTS > 0\\n\\tSpotLight spotLight;\\n\\t#pragma unroll_loop\\n\\tfor ( int i = 0; i < NUM_SPOT_LIGHTS; i ++ ) {\\n\\t\\tspotLight = spotLights[ i ];\\n\\t\\tshadow *= bool( spotLight.shadow ) ? getShadow( spotShadowMap[ i ], spotLight.shadowMapSize, spotLight.shadowBias, spotLight.shadowRadius, vSpotShadowCoord[ i ] ) : 1.0;\\n\\t}\\n\\t#endif\\n\\t#if NUM_POINT_LIGHTS > 0\\n\\tPointLight pointLight;\\n\\t#pragma unroll_loop\\n\\tfor ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {\\n\\t\\tpointLight = pointLights[ i ];\\n\\t\\tshadow *= bool( pointLight.shadow ) ? getPointShadow( pointShadowMap[ i ], pointLight.shadowMapSize, pointLight.shadowBias, pointLight.shadowRadius, vPointShadowCoord[ i ], pointLight.shadowCameraNear, pointLight.shadowCameraFar ) : 1.0;\\n\\t}\\n\\t#endif\\n\\t#endif\\n\\treturn shadow;\\n}\";\n\nvar skinbase_vertex = \"#ifdef USE_SKINNING\\n\\tmat4 boneMatX = getBoneMatrix( skinIndex.x );\\n\\tmat4 boneMatY = getBoneMatrix( skinIndex.y );\\n\\tmat4 boneMatZ = getBoneMatrix( skinIndex.z );\\n\\tmat4 boneMatW = getBoneMatrix( skinIndex.w );\\n#endif\";\n\nvar skinning_pars_vertex = \"#ifdef USE_SKINNING\\n\\tuniform mat4 bindMatrix;\\n\\tuniform mat4 bindMatrixInverse;\\n\\t#ifdef BONE_TEXTURE\\n\\t\\tuniform sampler2D boneTexture;\\n\\t\\tuniform int boneTextureSize;\\n\\t\\tmat4 getBoneMatrix( const in float i ) {\\n\\t\\t\\tfloat j = i * 4.0;\\n\\t\\t\\tfloat x = mod( j, float( boneTextureSize ) );\\n\\t\\t\\tfloat y = floor( j / float( boneTextureSize ) );\\n\\t\\t\\tfloat dx = 1.0 / float( boneTextureSize );\\n\\t\\t\\tfloat dy = 1.0 / float( boneTextureSize );\\n\\t\\t\\ty = dy * ( y + 0.5 );\\n\\t\\t\\tvec4 v1 = texture2D( boneTexture, vec2( dx * ( x + 0.5 ), y ) );\\n\\t\\t\\tvec4 v2 = texture2D( boneTexture, vec2( dx * ( x + 1.5 ), y ) );\\n\\t\\t\\tvec4 v3 = texture2D( boneTexture, vec2( dx * ( x + 2.5 ), y ) );\\n\\t\\t\\tvec4 v4 = texture2D( boneTexture, vec2( dx * ( x + 3.5 ), y ) );\\n\\t\\t\\tmat4 bone = mat4( v1, v2, v3, v4 );\\n\\t\\t\\treturn bone;\\n\\t\\t}\\n\\t#else\\n\\t\\tuniform mat4 boneMatrices[ MAX_BONES ];\\n\\t\\tmat4 getBoneMatrix( const in float i ) {\\n\\t\\t\\tmat4 bone = boneMatrices[ int(i) ];\\n\\t\\t\\treturn bone;\\n\\t\\t}\\n\\t#endif\\n#endif\";\n\nvar skinning_vertex = \"#ifdef USE_SKINNING\\n\\tvec4 skinVertex = bindMatrix * vec4( transformed, 1.0 );\\n\\tvec4 skinned = vec4( 0.0 );\\n\\tskinned += boneMatX * skinVertex * skinWeight.x;\\n\\tskinned += boneMatY * skinVertex * skinWeight.y;\\n\\tskinned += boneMatZ * skinVertex * skinWeight.z;\\n\\tskinned += boneMatW * skinVertex * skinWeight.w;\\n\\ttransformed = ( bindMatrixInverse * skinned ).xyz;\\n#endif\";\n\nvar skinnormal_vertex = \"#ifdef USE_SKINNING\\n\\tmat4 skinMatrix = mat4( 0.0 );\\n\\tskinMatrix += skinWeight.x * boneMatX;\\n\\tskinMatrix += skinWeight.y * boneMatY;\\n\\tskinMatrix += skinWeight.z * boneMatZ;\\n\\tskinMatrix += skinWeight.w * boneMatW;\\n\\tskinMatrix = bindMatrixInverse * skinMatrix * bindMatrix;\\n\\tobjectNormal = vec4( skinMatrix * vec4( objectNormal, 0.0 ) ).xyz;\\n\\t#ifdef USE_TANGENT\\n\\t\\tobjectTangent = vec4( skinMatrix * vec4( objectTangent, 0.0 ) ).xyz;\\n\\t#endif\\n#endif\";\n\nvar specularmap_fragment = \"float specularStrength;\\n#ifdef USE_SPECULARMAP\\n\\tvec4 texelSpecular = texture2D( specularMap, vUv );\\n\\tspecularStrength = texelSpecular.r;\\n#else\\n\\tspecularStrength = 1.0;\\n#endif\";\n\nvar specularmap_pars_fragment = \"#ifdef USE_SPECULARMAP\\n\\tuniform sampler2D specularMap;\\n#endif\";\n\nvar tonemapping_fragment = \"#if defined( TONE_MAPPING )\\n\\tgl_FragColor.rgb = toneMapping( gl_FragColor.rgb );\\n#endif\";\n\nvar tonemapping_pars_fragment = \"#ifndef saturate\\n\\t#define saturate(a) clamp( a, 0.0, 1.0 )\\n#endif\\nuniform float toneMappingExposure;\\nuniform float toneMappingWhitePoint;\\nvec3 LinearToneMapping( vec3 color ) {\\n\\treturn toneMappingExposure * color;\\n}\\nvec3 ReinhardToneMapping( vec3 color ) {\\n\\tcolor *= toneMappingExposure;\\n\\treturn saturate( color / ( vec3( 1.0 ) + color ) );\\n}\\n#define Uncharted2Helper( x ) max( ( ( x * ( 0.15 * x + 0.10 * 0.50 ) + 0.20 * 0.02 ) / ( x * ( 0.15 * x + 0.50 ) + 0.20 * 0.30 ) ) - 0.02 / 0.30, vec3( 0.0 ) )\\nvec3 Uncharted2ToneMapping( vec3 color ) {\\n\\tcolor *= toneMappingExposure;\\n\\treturn saturate( Uncharted2Helper( color ) / Uncharted2Helper( vec3( toneMappingWhitePoint ) ) );\\n}\\nvec3 OptimizedCineonToneMapping( vec3 color ) {\\n\\tcolor *= toneMappingExposure;\\n\\tcolor = max( vec3( 0.0 ), color - 0.004 );\\n\\treturn pow( ( color * ( 6.2 * color + 0.5 ) ) / ( color * ( 6.2 * color + 1.7 ) + 0.06 ), vec3( 2.2 ) );\\n}\\nvec3 ACESFilmicToneMapping( vec3 color ) {\\n\\tcolor *= toneMappingExposure;\\n\\treturn saturate( ( color * ( 2.51 * color + 0.03 ) ) / ( color * ( 2.43 * color + 0.59 ) + 0.14 ) );\\n}\";\n\nvar uv_pars_fragment = \"#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\\n\\tvarying vec2 vUv;\\n#endif\";\n\nvar uv_pars_vertex = \"#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\\n\\tvarying vec2 vUv;\\n\\tuniform mat3 uvTransform;\\n#endif\";\n\nvar uv_vertex = \"#if defined( USE_MAP ) || defined( USE_BUMPMAP ) || defined( USE_NORMALMAP ) || defined( USE_SPECULARMAP ) || defined( USE_ALPHAMAP ) || defined( USE_EMISSIVEMAP ) || defined( USE_ROUGHNESSMAP ) || defined( USE_METALNESSMAP )\\n\\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\\n#endif\";\n\nvar uv2_pars_fragment = \"#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\\n\\tvarying vec2 vUv2;\\n#endif\";\n\nvar uv2_pars_vertex = \"#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\\n\\tattribute vec2 uv2;\\n\\tvarying vec2 vUv2;\\n#endif\";\n\nvar uv2_vertex = \"#if defined( USE_LIGHTMAP ) || defined( USE_AOMAP )\\n\\tvUv2 = uv2;\\n#endif\";\n\nvar worldpos_vertex = \"#if defined( USE_ENVMAP ) || defined( DISTANCE ) || defined ( USE_SHADOWMAP )\\n\\tvec4 worldPosition = modelMatrix * vec4( transformed, 1.0 );\\n#endif\";\n\nvar background_frag = \"uniform sampler2D t2D;\\nvarying vec2 vUv;\\nvoid main() {\\n\\tvec4 texColor = texture2D( t2D, vUv );\\n\\tgl_FragColor = mapTexelToLinear( texColor );\\n\\t#include \\n\\t#include \\n}\";\n\nvar background_vert = \"varying vec2 vUv;\\nuniform mat3 uvTransform;\\nvoid main() {\\n\\tvUv = ( uvTransform * vec3( uv, 1 ) ).xy;\\n\\tgl_Position = vec4( position.xy, 1.0, 1.0 );\\n}\";\n\nvar cube_frag = \"uniform samplerCube tCube;\\nuniform float tFlip;\\nuniform float opacity;\\nvarying vec3 vWorldDirection;\\nvoid main() {\\n\\tvec4 texColor = textureCube( tCube, vec3( tFlip * vWorldDirection.x, vWorldDirection.yz ) );\\n\\tgl_FragColor = mapTexelToLinear( texColor );\\n\\tgl_FragColor.a *= opacity;\\n\\t#include \\n\\t#include \\n}\";\n\nvar cube_vert = \"varying vec3 vWorldDirection;\\n#include \\nvoid main() {\\n\\tvWorldDirection = transformDirection( position, modelMatrix );\\n\\t#include \\n\\t#include \\n\\tgl_Position.z = gl_Position.w;\\n}\";\n\nvar depth_frag = \"#if DEPTH_PACKING == 3200\\n\\tuniform float opacity;\\n#endif\\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\nvoid main() {\\n\\t#include \\n\\tvec4 diffuseColor = vec4( 1.0 );\\n\\t#if DEPTH_PACKING == 3200\\n\\t\\tdiffuseColor.a = opacity;\\n\\t#endif\\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#if DEPTH_PACKING == 3200\\n\\t\\tgl_FragColor = vec4( vec3( 1.0 - gl_FragCoord.z ), opacity );\\n\\t#elif DEPTH_PACKING == 3201\\n\\t\\tgl_FragColor = packDepthToRGBA( gl_FragCoord.z );\\n\\t#endif\\n}\";\n\nvar depth_vert = \"#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\nvoid main() {\\n\\t#include \\n\\t#include \\n\\t#ifdef USE_DISPLACEMENTMAP\\n\\t\\t#include \\n\\t\\t#include \\n\\t\\t#include \\n\\t#endif\\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n}\";\n\nvar distanceRGBA_frag = \"#define DISTANCE\\nuniform vec3 referencePosition;\\nuniform float nearDistance;\\nuniform float farDistance;\\nvarying vec3 vWorldPosition;\\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\nvoid main () {\\n\\t#include \\n\\tvec4 diffuseColor = vec4( 1.0 );\\n\\t#include \\n\\t#include \\n\\t#include \\n\\tfloat dist = length( vWorldPosition - referencePosition );\\n\\tdist = ( dist - nearDistance ) / ( farDistance - nearDistance );\\n\\tdist = saturate( dist );\\n\\tgl_FragColor = packDepthToRGBA( dist );\\n}\";\n\nvar distanceRGBA_vert = \"#define DISTANCE\\nvarying vec3 vWorldPosition;\\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\nvoid main() {\\n\\t#include \\n\\t#include \\n\\t#ifdef USE_DISPLACEMENTMAP\\n\\t\\t#include \\n\\t\\t#include \\n\\t\\t#include \\n\\t#endif\\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\tvWorldPosition = worldPosition.xyz;\\n}\";\n\nvar equirect_frag = \"uniform sampler2D tEquirect;\\nvarying vec3 vWorldDirection;\\n#include \\nvoid main() {\\n\\tvec3 direction = normalize( vWorldDirection );\\n\\tvec2 sampleUV;\\n\\tsampleUV.y = asin( clamp( direction.y, - 1.0, 1.0 ) ) * RECIPROCAL_PI + 0.5;\\n\\tsampleUV.x = atan( direction.z, direction.x ) * RECIPROCAL_PI2 + 0.5;\\n\\tvec4 texColor = texture2D( tEquirect, sampleUV );\\n\\tgl_FragColor = mapTexelToLinear( texColor );\\n\\t#include \\n\\t#include \\n}\";\n\nvar equirect_vert = \"varying vec3 vWorldDirection;\\n#include \\nvoid main() {\\n\\tvWorldDirection = transformDirection( position, modelMatrix );\\n\\t#include \\n\\t#include \\n}\";\n\nvar linedashed_frag = \"uniform vec3 diffuse;\\nuniform float opacity;\\nuniform float dashSize;\\nuniform float totalSize;\\nvarying float vLineDistance;\\n#include \\n#include \\n#include \\n#include \\n#include \\nvoid main() {\\n\\t#include \\n\\tif ( mod( vLineDistance, totalSize ) > dashSize ) {\\n\\t\\tdiscard;\\n\\t}\\n\\tvec3 outgoingLight = vec3( 0.0 );\\n\\tvec4 diffuseColor = vec4( diffuse, opacity );\\n\\t#include \\n\\t#include \\n\\toutgoingLight = diffuseColor.rgb;\\n\\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n}\";\n\nvar linedashed_vert = \"uniform float scale;\\nattribute float lineDistance;\\nvarying float vLineDistance;\\n#include \\n#include \\n#include \\n#include \\n#include \\nvoid main() {\\n\\t#include \\n\\tvLineDistance = scale * lineDistance;\\n\\tvec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );\\n\\tgl_Position = projectionMatrix * mvPosition;\\n\\t#include \\n\\t#include \\n\\t#include \\n}\";\n\nvar meshbasic_frag = \"uniform vec3 diffuse;\\nuniform float opacity;\\n#ifndef FLAT_SHADED\\n\\tvarying vec3 vNormal;\\n#endif\\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\nvoid main() {\\n\\t#include \\n\\tvec4 diffuseColor = vec4( diffuse, opacity );\\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\tReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );\\n\\t#ifdef USE_LIGHTMAP\\n\\t\\treflectedLight.indirectDiffuse += texture2D( lightMap, vUv2 ).xyz * lightMapIntensity;\\n\\t#else\\n\\t\\treflectedLight.indirectDiffuse += vec3( 1.0 );\\n\\t#endif\\n\\t#include \\n\\treflectedLight.indirectDiffuse *= diffuseColor.rgb;\\n\\tvec3 outgoingLight = reflectedLight.indirectDiffuse;\\n\\t#include \\n\\tgl_FragColor = vec4( outgoingLight, diffuseColor.a );\\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n}\";\n\nvar meshbasic_vert = \"#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\n#include \\nvoid main() {\\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#ifdef USE_ENVMAP\\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#endif\\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n\\t#include \\n}\";\n\nvar meshlambert_frag = \"uniform vec3 diffuse;\\nuniform vec3 emissive;\\nuniform float opacity;\\nvarying vec3 vLightFront;\\nvarying vec3 vIndirectFront;\\n#ifdef DOUBLE_SIDED\\n\\tvarying vec3 vLightBack;\\n\\tvarying vec3 vIndirectBack;\\n#endif\\n#include \\n#include \\n#include